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Abstract 

 

As AI-driven search and Large Language Models (LLMs) reshape the digital landscape, 

structural integrity of enterprise websites has become critical for machine interpretability. 

However, large-scale hierarchical websites suffer from “structural drift” where content owners 

focus on page creation rather than optimal placement within the network ecosystem. To address 

this, we propose a dual-stage AI framework designed to automate the governance of enterprise 

web architecture. 

Using part of a Fortune 500 Enterprise domain as a representative case study (1,169 

webpages, 18,428 links), this research develops a workflow to solve the “cold-start” problem 

and ensure long-term structural health. First, we implemented a cold-start classifier using TF-

IDF and Logistic regression, which successfully categorizes new, unconnected text content 

with 92% accuracy. Second, we developed a Network Audit mechanism to validate page 

placement. Our extensive analysis revealed that network topology is a superior predictor for 

business logic, achieving 95.3% accuracy using Random Forest models. 

The thesis demonstrates that a practical, two-step workflow using text analysis for 

immediate classification and network analysis for continuous validation provides a robust 

solution for maintaining complex enterprise web structures without the need for 

computationally expensive deep learning techniques. 

 

Keywords: network science, machine learning, webpage classification, cold-start problem, 
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1 Introduction and background 

1.1 Problem statement 

Enterprise websites, often including thousands of pages developed by 

decentralized teams, have grown too large and complex for holistic manual 

oversight. This scale created a critical risk in the modern digital ecosystem: without 

a coherent underlying structure, these sites risk becoming a “black box”, leading to 

significant operational inefficiencies. The core challenge is no longer just content 

creation but ensuring that this vast digital footprint is structurally sound and 

discoverable. When the structure decays, it leads to three specific business 

problems: 

1.1.1 High maintenance cost 

Websites with multiple content-silos, orphaned content could require 

constant maintenance. Manual auditing to identify structural issues demands 

significant manual effort creating a snowball effect where unaddressed problems 

compound over time, gradually degrading overall site performance. 

While specific studies on enterprise web maintenance costs are limited, we 

can build a conservative estimate based on observable practices: 

A. Manual content audit for a 10,000-page site typically requires 2-3 

minutes per page just for the initial status checks, plus additional time 

for documenting and addressing issues. This easily totaling 800-1,000 

hours annually. At a typical analyst rate of $50/hour, audit costs alone 

reach $40,000-$50,000. 

B. Remediation adds substantially more. Simple fixes like broken links 

take 15 minutes, while structural fixes requiring re-categorization or 

content integration can take 2-4 hours per page. Assuming just 20% of 

pages need some intervention annually, remediation costs approximate 

$150,000. 

These calculations exclude all hidden costs like any additional fix, 

emergency updates which could typically take longer than preventive 

maintenance, but we still get a conservative $200,000 annually cost on this 
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structure related maintenance. This financial drain is a direct result of reactive, 

manual governance rather than proactive, automated structural management. 

1.1.2 Diminished content ROI 

A “content-first” approach without network-centric governance could lead 

to redundant content and the creation of isolated page communities. When teams 

cannot visualize the existing content network or predict where new pages will 

connect, they inadvertently create duplicate content or publish pages that become 

immediately orphaned.  

For example, a marketing team might invest significantly in a new 

“solutions” page, unaware that similar content already exists in another business 

unit. This not only wastes the initial creation budget but creates long-term liabilities. 

At an enterprise scale, these redundant pages are often localized into multiple 

languages, multiplying the waste. If a company operates in 75 locals, a single 

redundant page generates tens of thousands of dollars in unnecessary translation 

and deployment costs. This is the price of focusing content creation while ignoring 

the page’s place within the network. 

1.1.3 Inconsistent user experience 

Poor site structure directly impacts user satisfaction and business outcomes. 

Research by Nielsen Norman Group found that difficulty finding information is 

responsible for significant user frustration and abandonment on enterprise websites 

[1]. When users encounter structural dead-ends or content silos that force them into 

navigation loops, they quickly abandon their journey. 

The Baymard Institute’s comprehensive e-commerce studies consistently show 

that navigation issues and inability to find desired product rank among the top 

reasons for site abandonment, with their data showing an average 70% cart 

abandonment rate across industries [2]. Users have limited patience for navigation 

failures, typically abandoning their search after multiple unsuccessful attempts [3]. 

For enterprise pages processing millions of visits annually, these structural 

issues comping: if even 10% of visitors encounter navigation dead-ends, that 

represent hundreds of thousands of lost opportunities monthly.  
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Google’s research emphasizes that user expectations continue to rise, with 53% 

of mobile users abandoning sites that fail to meet their needs quickly [4].  

Even marginal improvements in network coherence (ensuring every page has a 

clear path forward and connection to related content) can significantly impact user 

success rates and conversion metrics. 

1.2 The core research question and vision  

Before we can automate the management of these complex systems, we must 

answer a fundamental question: How can an AI automatically classify new content 

and validate the structural integrity of a massive enterprise website? 

The process of answering this core question raised several practical sub-

questions across the different phases of the research, including:  

• What kind of data need to be collected for a network? 

• How this data can be collected effectively with crawlers, and which is the best 

way to process and store it? 

• How can the network be visualized as an interactive graph that is easy to 

interpret and analyze? 

• What type of features can be extracted from this data, and how can this be done 

effectively? 

• Which machine learning algorithms are most suitable for this classification 

task? 

• How can a simple web application with a user interface be built and connected 

to predictive models and network visualization? 

 

In answering these questions, a long-term vision emerged: to empower 

enterprises with an automated governance framework. This system moves beyond 

simple “content analysis” to create a “classify, place, verify” workflow: 

1. Classify (Cold-Start): Instantly identify where a new page belongs based 

on its text. 

2. Place: Integrate the page into the site structure. 

3. Verify (Network audit): Continuously scan the site’s links to detect if 

pages are placed incorrectly or if the structure is drifting. 
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This shifts the paradigm from reactive maintenance to proactive architectural 

optimization. 

1.3 Research objectives 

The primary objective of this research is to build and validate this dual-stage AI 

framework. Instead of focusing strictly on compare different algorithms, this work 

focuses on operational/business goals: 

A. Solve the “Cold-start” problem: Develop a production-ready text 

classifier capable of categorizing new, unconnected content with high 

accuracy (>90%) to enable immediate automation. 

B. Establish a “ground truth” validator: prove that the website’s network 

topology (links) provides more accurate signal of business logic than other 

types. This validates the use of network analysis as automated “Auditor” to 

check the work of content/deployment teams. 

C. Demonstrate feature efficiency: show that complex Deep Learning 

models (like Graph Neural Networks) are often “overkill” for this specific 

domain, and that simpler, explainable models can achieve state-of-the-art 

performance for practical deployment. 

Together, these objectives provide the comprehensive validation required to 

shift enterprise strategy from a content-first to a network-centric model for website 

governance. 

1.4 Dataset overview and key findings 

To build this system we modeled a 1,169-page, 18,428-link section of the 

Fortune 500 Enterprise’s website as a complex network. Our research led to 

successful development of the proposed framework, backed by three key findings: 

• The solution for cold-start problem: We successfully built a 

lightweight text-based classifier that solves the cold-start problem. By 

using TF-IDF and Logistic Regression, the system can instantly 

categorize new pages with 92% accuracy, proving that immediate 

automation is viable. 
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• The network validator: We confirmed that for existing pages, the 

network structure is the ultimate “source of truth”. Our network-based 

models achieved 95.3% accuracy in identifying a page’s business 

function solely based on its links. This allows the system to “audit” 

itself using the network model to double-check if the text model (or a 

human editor) placed a page correctly. 

• The efficiency insight: We found that while Graph Neural Networks 

(GraphSAGE model) performed exceptionally well (94.9%), they did 

not significantly outperform simpler Random Forest models (95.3%). 

This critical finding suggests that practical enterprise governance, 

robust standard models are more efficient and deployable than 

complex deep learning architectures. 

2 Literature review 

This chapter reviews the foundational academic work that underpins our 

network-centric approach. We will first explore the solution of network-based web 

analysis, from early graph theory applications to modern community detection 

algorithms. We will then examine the literature of cold-start problem and text-based 

classification. Finally, we will synthesize these fields to identify the critical 

research gap that this thesis addresses. 

2.1 Network based web analysis 

The concept of analyzing the web as a network of interconnected nodes has been 

a cornerstone of web science for decades. This section traces the evolution of this 

idea, beginning with the foundational theories that first applied graph science to the 

web, moving to the specific algorithms developed to uncover hidden structures 

within these networks, and concluding with the current state of analysis for 

enterprise-specific websites. 
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2.1.1 Graph theory in Web Science 

The application of graph theory to understand the web began with the 

foundational work of Page and Brin (PageRank) and Kleinberg (HITS) which 

demonstrated that importance of a web page is defined recursively by the 

importance of the pages linking to it [5,6]. This shifted the focus from analyzing 

pages in isolation to understanding them through their connections.  Barabási and 

Newman expanded this view by showing that real-word networks, including the 

web, exhibit scale-free properties and preferential attachment [7,8]. This implies 

that in an enterprise website (like in our case), “hub” pages (like a product listing) 

naturally emerge and attract links, creating a structural fingerprint that identifies 

their business function without analyzing their text. 

2.1.2 Community detection and structural semantics 

A critical component of validating website structure is identifying 

“communities”, clusters of pages that link more densely to each other than to the 

rest of the network. Girvan and Newman and later the Louvain and Leiden 

algorithms established that these communities are often correspond to functional 

units in the real world [9,10,11]. In an enterprise context, a “community” in the web 

graph typically represents specific business unit. This literature provides the 

theoretical basis for our network audit module: if a page belongs to the solutions 

text category but it structurally located in the products community it is an anomaly. 

2.2 The cold-start problem in content management 

While network analysis excels at understanding existing structures, it 

suffers from a fundamental limitation known in recommender systems literature as 

the “cold-start problem”. 

2.2.1 The limitations of collaborative filtering 

Traditional recommendation and classification systems often rely on 

“collaborative filtering” using past interactions (links/clicks) to classify an item. 

However, as noted in recent systematic reviews by Panda et al. (2022) and Zaiwa 

et al. (2024), these systems fail when a new item (or webpage) is introduced because 
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its lacks the necessary connection history to be analyzed [13,14]. This is the exact 

challenge facing the enterprise content management: a new page has no incoming 

links and network position yet, therefore, network models can’t classify it. 

2.2.2 Text-based classification as the solution 

To solve the cold-start problem, literature suggests “content-based filtering” as 

the mandatory step. By analyzing the item’s intrinsic features (text content) rather 

than its extrinsic features (links), systems can achieve immediate classification. 

Standard techniques such as TF-IDF (Term Frequency-Inverse Document 

Frequency) coupled with linear classifiers (Logistic Regression, SVM) remain the 

industry standard for this task due to their low latency and high interpretability [15]. 

While recent advancement using BERT and Transformers offer higher semantic 

understanding, studies consistently show that for specific domain tasks with limited 

data, simpler “bag-of-words” models often provide a competitive and 

computationally more efficient baseline [15]. For real-time enterprise governance, 

the literature supports the use of these efficient models to bridge gap until the page 

acquires enough links to be analyzed by the network model. 

2.3 Graph Neural Networks 

Once a page is integrated into the network, modern Deep Learning allows for 

a more sophisticated analysis of its role. Graph Neural Networks (GNNs) have 

emerged as the state-of-the-art method for node classification, capable of learning 

from both the links and the features of neighboring nodes. 

 The Graph Convolutional Network (GCN), introduced by Kipf and 

Wellington, revolutionized this field by allowing information to propagate through 

the graph structure [16].  However, GCNs require the entire graph to be present 

during training, which is impractical for constantly changing websites. GraphSAGE 

(Hamilton et al., 2017) addressed this by learning “inductive” embedding functions. 

Instead of memorizing the graph, GraphSAGE learns how to aggregate information 

from a node’s neighbors [17]. This theoretical advantage makes GraphSAGE the 

primary candidate for our experimental “upper bound” analysis, representing the 

most complex possible solution to the network classification problem. 
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2.4 Gap in current research 

Despite the rich literature in both text classification and graph mining, there is a 

distinct gap in applied Enterprise AI Governance. 

1. Separation of concerns: existing studies typically focus either on text 

classification (NLP) or network topology (Graph Mining). Few studies 

propose and integrated workflow that uses text as the cold-start phase and 

network topology for the validation phase [18]. 

2. Over-engineering in production: academic literature often prioritizes 

maximizing accuracy with complex GNNs without regarding the “feature 

efficiency principle” [15]. There is little research quantifying whether the 

structural complexity of a GNN is actually necessary for enterprise web data, 

or if simpler Random Forest models can capture the same business logic with 

lower overhead. 

3. Focus on external search vs. internal structure: the vast majority of web 

analysis literature focuses on SEO for external discovery. There is a scarcity 

of research focused on internal structural health and automated governance 

policies, as highlighted in recent reviews on AI in corporate governance [22]. 

3 System architecture and data collection 

This project required the development of a complete, end-to-end pipeline to 

transform a live enterprise website into a structured dataset ready for machine 

learning analysis. The system consists of two primary concepts: a custom web 

scraper for data collection and an AI engine for feature extraction and analysis. This 

chapter details the architecture of that system. 

 

3.1 End to end system overview 

To validate our dual-stage AI framework, we developed a software architecture 

capable of transforming a live enterprise website into a structured, machine-

learnable dataset. The system was designed with two distinct operational goals: 

A. The analytical pipeline (track A): to rigorously test feature efficiency 

and network supremacy using low-dimensional, interpretable metrics. 
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B. The inference engine (track B): to deploy a high-dimensional, low-

latency “cold-start” classifier for production use. 

The data follows four main stages: 

1. Data collection: A custom web scraper systematically navigates the target 

website extracting raw HTML content, metadata, and the hyperlink 

structure for each page. During the crawl we only gather public data from 

pages where bot traffic enabled through the “index, follow” tag and which 

are represented in the page’s public sitemap XML file. 

2. Structured storage: The raw scraped data is cleaned and organized into a 

relational database, with distinct tables for pages (nodes) and links (edges) 

to from a graph structure. 

3. Feature engineering: The AI Engine process raw data from the database 

into versioned feature sets, separating statistical metrics from production 

vectors. 

4. Modeling and inference: the final feature set is used to train and evaluate 

the machine learning models, leading the productions-ready inference 

service. The training separates the “Auditor” (Network) and “Classifier” 

(Text) models to support the automated governance workflow. 
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Figure 1: System architecture with the separate program layers 

3.2 Web Scraper architecture 

To collect data at scale, we developed a custom, enterprise-grade web scraper 

using Python, BeautifulSoup4 and Requests. The architecture was designed to be 

robust and efficient, capable of handling the complexities of modern, modular 

websites. 

The system extracts three layers of data from the target domain: 
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• Topology: All internal hyperlinks were extracted to construct a directed 

graph of 1,169 nodes and 18,428 edges, capturing the site’s navigational 

skeleton. 

• Content: Raw HTML was parsed to extract the body text, excluding the 

navigation boilerplate to ensure clean semantic signals. 

• Metadata: The scraper captures hierarchical headers (H1-H6) and detects 

proprietary CMS layout modules to understand visual structure. 

The scraper was engineered to handle common real-world challenges, including 

client-side JavaScript rendering, respecting robots.txt and server rate limits with 

configurable delays, and parsing the non-standard CMS components. Other key 

challenges during this development: 

• Implementing robust error handling and retry logic to ensure the 

accuracy and completeness of the collected data 

• Designing an efficient data processing pipeline to minimize CPU and 

memory load during intensive scraping operations. 

• Storing the extracted data in a database schema optimized for efficient 

access and complex network-based queries. 

3.3 AI Engine architecture 

The AI Engine is the analytical core of the system, designed to transform the 

raw data into machine learning features. To address the research question regarding 

“feature efficiency”, we designed the engine to support multiple extraction 

strategies, distinguishing between descriptive metrics (used for analysis) and 

semantic vectors (used for production). To support the dual-track methodology, the 

engine is split into two pipelines: 

3.3.1 Track A: The analytical pipeline (network audit) 

For the primary experimental analysis (Chapter 4-5), the engine reduces 

complex raw data into 144 interpretable features. This pipeline prioritizes 

“efficiency” by capturing maximum business signal with minimal dimensions. 

• Network features (29 features): Using the NetworkKit backend for 

performance, this module computes graph-theoretic metrics including 
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PageRank, Betweenness Centrality and Louvain Community 

membership. This compresses the global site structure into a 29-

dimensional vector for each page. 

• NLP and semantic metrics (25+ features): Instead of using raw text 

vectors, this module distills content into scalar metrics to test if “text 

complexity” predicts business function. 

o Readability: Extracts Flesch-Kincaid and Gunning Fog scores. 

o Intent classification: Utilize a pre-trained MiniLM-L12 

transformer (384 dimensions). For the analytical experiments we 

used the categorical intents rather than the raw 384-dimensional 

embeddings to maintain feature interpretability. 

• Layout and basic features (56+ features): captures the visual 

“fingerprint” of a page by counting specific layout modules, images and 

analyzing URL depth. 

3.3.2 Track B: the inference pipeline (cold-start) 

For the “cold-start” production service where prediction accuracy is paramount 

over feature count, the engine switches to a high-dimensional approach. 

• TF-IDF vectorizer: unlike the analytical pipeline, the production model 

transforms raw text into a sparse vector space of 20,000 features (1-2 n-

grams). 

• Latency optimization: while deep learning transformers (like BERT) 

were available, the production system utilizes this TF-IDF architecture 

to achieve low inference latency (<100ms) and high throughput (>1000 

predictions/second). This decision ensures the system can handle real-

time enterprise loads without computational overhead of GNNs or 

Transformers. 

3.4 Data flow and integration 

The system’s components are tightly integrated to ensure a seamless flow of 

data. The scraper populates a database, which serves as the “source of truth”. The 

AI Engine then queries this database to build its analytical datasets and network 
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graphs. Trained models are serialized and versioned, ready to be loaded by the 

inference service for live predictions. This modular, database-centric architecture 

separates the concerns of data collections and data analysis, making the entire 

system robust and scalable. 

4 Methodology 

The primary challenge in automating enterprise web governance is the dual 

nature of the problem: new content requires immediate classification based on 

limited features we can extract from the input (cold-start problem), while existing 

content requires continuous structural validation (audit problem). 

To address this our methodology departs from traditional “monolithic” model 

development and instead of training a single model, we engineered two distinct 

subsystems with opposing design philosophies: 

1. Track A – the network auditor: A low-dimensional, interpretable model 

designed to establish “ground truth” by analyzing the site’s topology. The input is 

low dimensional network and metadata features. This model validates whether the 

site structure actually reflects business logic. In our experiments, this serves as the 

benchmark for accuracy. 

2. Track B – the cold-start classifier: A high dimensional, high-throughput 

model designed to approximate that ground truth using only text. The input is high 

dimensional vectors (TF-IDF). This model predicts where a page should go. 

This chapter details the mathematical foundations, data processing pipeline, and 

experimental design used to validate this framework. 

4.1 Analyzing websites as networks 

To build the “network auditor”, we first had to transform the static website into 

a quantifiable complex network. By modeling the website where pages are nodes 

(𝑉) and hyperlinks are directed edges (𝐸), we can employ a suite of powerful 

mathematical tools to measure the role, influence, and function of each page within 

the broader digital ecosystem.  
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Figure 2: The Fortune 500 Enterprise’s domain modelled and visualized as a directed 

graph where each color represents a different business unit 

4.1.1 Degree centrality 

Degree centrality is the most fundamental measure of a node’s connectivity. It 

is often split into two distinct types for directed networks like websites: 

• In-degree counts the number of incoming links, serving as a measure 

of a page’s local popularity or authority. 

• Out-degree counts the number of outgoing links, indicating its 

function as a navigational hub. 

The formulas are given by: 

𝑑𝑒𝑔𝑖𝑛(𝑣) =∣ {(𝑢, 𝑣) ∈ 𝐸} ∣, 

𝑑𝑒𝑔𝑜𝑢𝑡(𝑣) =∣ {(𝑣, 𝑢) ∈ 𝐸} ∣ 

In our research, pages with high in-degree were often important destinations 

(e.g., a product family page), while pages with high out-degree were typically 

navigational pages (e.g., a product gateway page with multiple product lines). 
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4.1.2 PageRank 

Developed by Brin and Page (1998), PageRank [5] measures a page’s global 

importance based on the principle that links from important pages confer more 

authority than links from unimportant ones. 

The formula is the following: 

𝑃𝑅(𝑣) =
1 − 𝑑

∣ 𝑉 ∣
+ 𝑑  ∑

𝑃𝑅(𝑢)

𝑑𝑒𝑔𝑜𝑢𝑡(𝑢)
𝑢∈𝑁𝑖𝑛(𝑣)

 

Here, d is a damping factor, typically set to 0.85, which represents the probability 

that a user will continue clicking links. 𝑁𝑖𝑛(𝑣) is the set of pages that link to page 

𝑣. The formula essentially reflects the probabilistic visibility of a page if a user were 

not navigating the site by randomly clicking links. In the context of an enterprise 

website, PageRank is a key indicator of “authority pages”, such as major business 

unit landing pages or top-level product categories. 

4.1.3 Betweenness centrality 

Betweenness centrality quantifies how often a page acts as a bridge or broker on 

the shortest navigational path between other pages. 

Its formula is: 

𝐶𝐵(𝑣) = ∑
𝜎𝑠𝑡(𝑣)

𝜎𝑠𝑡
𝑠≠𝑣≠𝑡

 

Where 𝜎𝑠𝑡 is the total number of shortest paths between page 𝑠 and page 𝑡, and 

𝜎𝑠𝑡(𝑣) is the number of those paths that pass-through page 𝑣. For our enterprise 

website, pages with high betweenness centrality often highlighted cross-functional 

landing zones or “solution” pages that connect different business areas, making 

them critical for information flow across the enterprise. 

4.1.4 Closeness centrality 

Closeness centrality measures how quickly a page can, on average, reach all 

other pages in the network. It is a measure of navigational efficiency. 

It is calculated as the inverse of the sum of the shortest path distances from page 

𝑣 to all other pages 𝑢: 
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𝐶 𝑐(𝑣) =
1

∑𝒖𝑑(𝑣, 𝑢)
 

In our analysis, pages with low closeness scores helped identify structurally 

isolated content, such as the 85-content island we discovered, which are hard for 

users and AI systems to reach. 

4.1.5 Eigenvector centrality 

Eigenvector is a more nuanced measure of importance. Like PageRank, it holds 

that connections to important nodes are more valuable. However, it specifically 

identifies pages that are connected to other highly connected pages, making it a 

measure of influence within the network. 

It’s defined as the principal eigenvector of the graph’s adjacency matrix 𝐴, 

satisfying the equation: 

𝑥𝑖 =
1

𝜆
∑ 𝐴𝑖𝑗

𝑛

𝑗=1

𝑥𝑗 

Where 𝜆 is the largest eigenvalue of 𝐴.This metric was particularly useful for 

detecting foundational “anchor pages” within the analyzed ecosystem that serves as 

the center of influential neighborhoods. 

4.1.6 Community detection and modularity 

Community detection algorithms, such as Louvain and Leiden, aim to partition 

the network into clusters that have dense internal connections and sparser 

connection between clusters. The quality of this partitioning measure by modularity 

(𝑄). 

The modularity formula is: 

𝑄 =
1

2𝑚
∑[𝐴𝑖𝑗 −

𝑘𝑖𝑘𝑗

2𝑚
]𝛿(𝑐𝑖, 𝑐𝑗)

𝑖,𝑗

 

Where m is the number of edges, 𝐴𝑖𝑗 is the adjacency matrix, 𝑘𝑖 is the degree of 

node 𝑖, and 𝛿(𝑐𝑖, 𝑐𝑗) is 1 if nodes 𝑖 and 𝑗 are in the same community, and 0 otherwise. 

A high 𝑄 score (our network had 𝑄 =  0.847) indicates a well-defined community 

structure. Our finding that the resulting communities correlated with business unit 

boundaries is a cornerstone of this thesis’s argument. 
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4.1.7 Participation coefficient 

The participation coefficient measures how a page’s links are distributed among 

different communities. It is an excellent proxy for identifying cross-functional 

content. 

It is calculated as:  

𝑃𝑖 = 1 − ∑ (
𝑘𝑖𝑠

𝑘𝑖
)

2
𝑁𝑀

𝑠=1

 

Here, 𝑁𝑀 is the number of communities, 𝑘𝑖 is the total degree of a page 𝑖, and 

𝑘𝑖𝑠 is the number of links from page 𝑖 to pages in community 𝑠. A page with a 

participation coefficient near 1 is a “connector” with links distributed among many 

communities. A score near 0 indicates its links are almost exclusively within its 

own community. In our error analysis, we noted that the model struggled with 

“shared” content. These pages often exhibited a high participation coefficient, 

confirming their structurally ambiguous role. 

4.2 Data collection and preprocessing 

The foundation of this research is the dataset of 1,169 pages and 18,428 

internal links collected from Fortune 500 Enterprise’s website. An initial data 

quality assessment revealed the dataset to be high quality, with a low missing value 

rate of just 1.8% (589 out of 33,443 values), for which no systematic patterns were 

detected. 

To prepare the data for our dual-track modeling, a standardized preprocessing 

pipeline was applied. 

4.2.1 Missing value treatment 

We treated predictors and target labels differently to ensure data integrity: 

• For predictor features (𝑥 variables): missing numeric features were 

filled using median imputation, while categorical features used mode 

imputation.  

• For target labels (𝑦 variable): pages with missing labels were removed 

from the traditional ML models to create a clean classification task, but 
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assigned a distinct “unknown” class for the GraphSAGE model to learn 

from the entire graph structure, including its ambiguous nodes.  

4.2.2 Outlier handling 

Statistical outliers were identified using the Interquartile Range (IQR) method. 

Values were capped at 1.5X IQR beyond the first and third quartiles to prevent 

extreme values (for example a sitemap page with extreme number of links) from 

skewing the models. 

4.2.3 Feature scaling and encoding:  

• Analytical models: All numeric features were scaled using a StandardScaler to 

ensure compatibility with SVM and Logistic Regression. Tree-based models 

(Random Forest, XGBoost) used the raw values as they are scale-invariant. 

• Production model: The data was normalized via TF-IDF, which inherently 

handles scaling through L2 normalization. 

4.3 Feature engineering 

Our analysis framework is built on a modular system of seven specialized 

feature extractors that generate a rich dataset of 144 features per page. This multi-

faceted approach ensures we capture signals for every dimension of a webpage. 

For Track A, we purposefully used only the 11 high-level “intent” categories 

rather than the full embedding vectors to test if low-dimensional metadata was 

sufficient for classification. Track B utilizes the high-dimensional feature space. 
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Track 
Feature 

family 

Feature 

count 
Purpose and key features 

A - Audit 
Basic 

features 
29 

Captures fundamental characteristics of the page. Includes 

URL depth, content metrics (word/link counts) and 

business taxonomy (e.g. Business unit). 

A - Audit 
Network 

features 
29 

Measures a page’s role and influence within the site’s 

network. Includes centrality scores (PageRank, 

Betweenness), and community detection metrics. 

A - Audit 
NLP 

features 
14 

Analyzes the complexity and readability of the text. 

Includes Flesch Reading Ease, SMOG Index, and other 

metrics 

A - Audit 
Semantic 

features 
11 

High level categorization (intent ID) derived from 

MiniLM embeddings.  

A - Audit 
Other 

features 
Varies 

Includes-specific layout and module detection, SEO 

metrics (keywords, descriptions) . 

B - Production 
Text 

Vectors 
20,000 

High-dimensional TF-IDF vectors (1-2 n-grams) for raw 

content classification. 

 

Table 1: Feature types, counts and their short descriptions 

4.4 Experimental design 

To ensure our results are scientifically valid and free from bias, we designed 

an experimental protocol centered around data integrity and fair comparison. 

4.4.1 Data splitting and leakage prevention 

A strict, stratified 80/20 holdout split was used, creating a training set of 935 

pages and a final, untouched test set of 234 pages. A fixed random seed 

(𝑟𝑎𝑛𝑑𝑜𝑚_𝑠𝑡𝑎𝑡𝑒 = 42) was used throughout all experiments to ensure perfect 

reproducibility. 

To prevent data leakage, we implemented several safeguards: 

• Temporal features (creation date, visit) were excluded. 

• URL tokens containing the target label (like “/products/”) were stripped 

from the text features  
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• All model running and cross-validation were performed exclusively on the 

training data. The tests set was only used once for the final evaluation of 

each model. 

• The identical 234-page test set was used across all four research phases, 

ensuring that any performance differences are due to changes in our models, 

not variations in data.  

4.4.2 Managing the labels 

A core strength of our methodology is the validation of our ground truth labels. 

• Primary labels: the target labels for classification (Business Unit, Product 

family, etc.) were sourced directly from the Enterpise’s own internal Content 

Management System (CMS) taxonomy. 

• Independent validation: to ensure these labels were meaningful we validated 

them against our network analysis. The fact that the algorithmically detected 

communities showed 94.2% homogeneity with the CMS business unit labels 

confirms the labels reflect the true underlying structure of the sties. This 

prevents any risk of circular reasoning, as the labels (from the CMS) and 

network features (from link structure) are from independent sources. 

4.4.3 Experimental progression 

Our research progressed through three distinct experiments: 

1. Experiment I (the validation of auditor): testing if network topology alone can 

predict business function. 

2. Experiment II (feature efficiency): testing if adding NLP and Layout metadata 

improved the auditor. 

3. Experiment III (cold-start solution): testing if the Text-first model can match 

the auditor’s performance for new pages. 

4.5 Evaluation metrics 

To provide a comprehensive assessment of model performance, we used a 

combination of primary, statistical and explainability metrics. 
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• Primary metrics: the main performance indicators were the 5-fold cross-

validation mean accuracy on the training set and the final text accuracy on 

the holdout set. 

• Statistical validation: to ensure our conclusions were robust, we calculated 

95% Bootstrap Confidence Intervals (using 10,000 samples) for key 

comparisons and reported Cliff’s Delta to measure effect size. 

• Explainability metrics: to understand why the models made their 

decisions, we used Permutation Important and Feature Ablation studies to 

identify the most influential features. 

4.6 Model Architectures and training parameters 

During our experiments we deployed diverse model families to establish 

performance baselines and theoretical limits. All models trained and evaluated with 

a fixed random seed (𝑟𝑎𝑛𝑑𝑜𝑚_𝑠𝑡𝑎𝑡𝑒 = 42) to ensure full reproducibility of our 

findings. 

4.6.1 Traditional ML models (Track A - network audit) 

We employed four classic supervised learning models to establish a strong 

performance baseline on the engineered feature set. The selection was guided by 

the need to test diverse model families, from easy to interpretable to powerful, non-

linear ensembles. All models used with standardized hyperparameters to ensure 

consistency and properly address natural class imbalances in the dataset. All 

features set for these models were preprocessed using StandardScaler, except the 

tree-based Random Forest and XGBoost models, which are scale-invariant. 

Model Key parameters Value or configuration 

Logistic Regression Max_iter 2000 

Class_weight balanced 

Random_state 42 

Support Vector Machine kernel rbf 

Class_weight balanced 

Random_state 42 
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Random Forest N_estimators 100 

Class_weight balanced 

Random_state 42 

XGBoost Eval_metric mlogloss 

Random_state 42 

 

Table 2: Hyperparameters of our Phase 1-2 models 

• Logistic Regression (LR): This linear model serves as an interpretable 

baseline. It was configured with 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 = 2000 to ensure 

convergence and 𝑐𝑙𝑎𝑠𝑠_𝑤𝑒𝑖𝑔ℎ𝑡 = ’𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑’ to manage class 

imbalance. 

• Support Vector Machine (SVM): Implemented with a radial basis 

function (𝑟𝑏𝑓) kernel and 𝑐𝑙𝑎𝑠𝑠_𝑤𝑒𝑖𝑔ℎ𝑡 = ’𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑’, this model was 

chosen for its effectiveness in capturing complex, non-linear 

relationships. 

• Random Forest (RF): As a robust tree-based ensemble with 100 

estimators and balanced class weights, this model was critical for its 

strong performance and feature importance rankings. 

• XGBoost: This gradient-boosted trees model represented out high-

performance benchmark, with fully documented parameters and 

𝑚𝑙𝑜𝑔𝑙𝑜𝑠𝑠 as the evaluation metric appropriate for our multi-class tasks. 

 

 

Figure 3: Hyperparameter tuning for RF, XGboost and LR models 
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4.6.2 Graph Neural Networks (Track A – network audit) 

During our Track A (network audit) experiments, we explored the performance 

ceiling using GraphSAGE, our top-performing GNN architecture. The model was 

trained for a maximum of 100 epoch with an early stopping patience of 15 to 

prevent overfitting. A critical finding was that the GNN achieved peak performance 

on 94.89% using only the 29 network topology features. 

 

 

Figure 4: The training curves of our GNN models 

The GraphSAGE model was implemented with two hidden layers to aggregate 

information from a two-hop neighborhood around each node. A dropout rate of 0.3 

was used for regularization. 

 

GNN Model name Key Parameters Value or configuration 

GraphSAGE 

Hidden_dim 128 

Num_layers 2 

dropout 0.3 

Learning_rate 0.01 

Weight_decay 5e-4 

 

Table 3: Hyperparameters for our GraphSAGE model 

4.6.3 Text-first model for production system (Track B - classifier) 

For the final phase, our goal was to build a model that was not only accurate but 

also highly scalable and ready for a real-world production environment. This model 
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needed to classify new content based on its text alone, without relying on pre-

existing network information. 

We engineered a two-stage pipeline optimized for low-latency inference: 

1. TF-IDF Vectorizer: This component transforms raw text into a numerical 

feature vector. It was configured to limit vocabulary to 20,000 features and 

capture both single words and two-word phrases (𝑛𝑔𝑟𝑎𝑚_𝑟𝑎𝑛𝑔𝑒 = (1,2)). 

2. Logistic Regression classifier: This classifier was specifically configured 

for this task with 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 = 2000 and 𝑐𝑙𝑎𝑠𝑠_𝑤𝑒𝑖𝑔ℎ𝑡 = ’𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑’ to 

better handle the imbalanced classes present in the text data. 

 

Figure 5: Top terms per business class in the cold-start classification 

This lightweight architecture successfully achieved high accuracy while 

maintaining an inference latency of under 100ms, making it perfectly suited for 

real-time applications. 

5 Results 

This chapter presents the empirical results of our analysis, beginning with a 

descriptive overview of the dataset to characterize the complexity of the enterprise 

ecosystem. We then detail the results of our three main experiments and conclude 

with an analysis of classification errors. 
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5.1 Descriptive analysis 

The subject of our analysis is a significant portion of a Fortune 500 

Enterprise’s website, comprising 1,169 unique pages (nodes) and 18,428 internal 

hyperlinks (edges). This dataset was split into a 935-page training set and a 234-

page test set to ensure rigorous evaluation. A descriptive analysis reveals a complex 

and varied digital ecosystem, characteristic of a large enterprise. 

5.1.1 The content landscape 

Characteristic Mean Std Dev Min Max Description 

Content metrics 

Text Length (chars) 1,935 3,343 0 78,096 
Main body text character 

count 

Word Count 387 669 0 15,619 Total words per page 

Avg Word Length 4.94 0.56 0 5.5 
Average characters per 

word 

Sentence Count 19 33 0 780 Total sentences 

Paragraph Count 6 11 0 260 Text paragraphs 

Link and structure 

Link Count 43 35 0 550 Total hyperlinks per page 

Image Count 10 15 0 199 Total images 

URL Depth 4.1 0.88 2 7 Depth in site hierarchy 

URL Length 83 24 33 169 URL character count 

Network metrics 

Degree (In) 16 34 0 237 
Inbound links (highly 

skewed) 

Degree (Out) 16 12 0 80 Outbound links 

PageRank 0.00086 0.0014 0.00015 0.011 Authority score 

Community Size 126 83 1 262 Detected community size 

Layout metrics 

Module Count 11 8 0 99 modular components 

Module Diversity 0.61 0.23 0 1.0 Shannon diversity index 

 

Table 4: Content statistics of the webpages 
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The content on the site is highly diverse, reflecting a wide range of business 

functions. The average page contains 387 words, but the distribution is heavily 

skewed, with content ranging from simple landing pages with zero body text 

(usually video module pages) to comprehensive technical case studies with over 

15,000 words. Similarly, the number of hyperlinks on a page averages 43 but can 

be as high as 550 on major navigational hubs. This diversity underscores the 

challenge of using content features alone for classification, as there is no “typical” 

page. 

5.1.2 The network architecture 

Analysis of the site’s link structure reveals a classic scale-free network, with 

a small number of highly connected “hub” pages and a long tail of more specialized 

pages. The network is dominated by a single giant component containing 1,064 

pages (91% of the dataset), ensuring information can flow across the site. 

However, the analysis also uncovered significant structural weaknesses. We 

identified 85 “content islands”, pages or small clusters of pages that are poorly 

integrated into the main network. These structural anomalies often represent 

content that is difficult for both users and AI systems to discover, highlighting a 

clear, actionable area of improvement for the enterprise. 

This complex and varied landscape provides a rich environment for testing 

our core hypothesis: determining which signals (the diverse page content or the 

underlying network structure) are most predictive of a page’s business function. 

5.2 Feature efficiency results 

To determine the optimal inputs for a network auditor, we conducted a 

comprehensive feature family supremacy analysis from Track A. Each of the seven 

feature families was used to train a model independently, using identical algorithms 

and the same cross-validation protocol. 
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5.2.1 Network supremacy 

  Our analysis revealed a clear and decisive winner: the network feature 

family. As summarized in table below, features derived from the website’s topology 

outperformed all other signal types. 

Rank 
Feature 

Family 
Features 

CV Mean 

(95% CI) 

Best 

Accuracy 

Gap vs 

Network 

1st 
Network 

(comprehensive) 
29 

92.5% (90.9-

94.4%) 
92.5% Baseline 

2nd 
Network  

(basic) 
7 

83.4% (80.3-

86.2%) 
86.0% -9.2 pp 

3rd Page Basic 4 
76.4% (74.2-

78.5%) 
77.6% -16.3 pp 

4th Layout 27 
72.7% (71.1-

74.1%) 
73.7% -19.9 pp 

5th SEO 5 
58.6% (56.0-

61.9%) 
58.3% -34.1 pp 

6th Text + NLP 19 
58.4% (56.6-

60.2%) 
56.1% -34.3 pp 

7th Semantic 11 
49.7% (48.8-

50.5%) 
51.3% -43.0 pp 

 

Table 5: Individual feature family performance for business unit classification 

The most striking result in the +34.3-percentage point gap in cross-

validation accuracy between the comprehensive network model (92.5%) and the 

Text + NLP model (58.4%). This massive difference was validated across multiple 

classification tasks, including segment (+40.3pp) and page-level (+27.4pp) 

predictions. 

The statistical evidence confirms this is not a random fluctuation. The 95% 

bootstrap confidence interval for the performance difference between network and 

text features was +31.6pp to +36.7pp, and the effect size analysis yielded a Cliff’s 

Delta of 1.00, a perfect effect size indicating that the network model outperformed 

the text model in every single cross-validation fold. 
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Figure 6: Feature family performance across all classification tasks 

5.2.2 Key insights from feature analysis 

The experiment yielded several notable insights that from the foundation of our 

Auditor design: 

• Structure is more predictive than metadata: features describing the 

page’s structure (network, page basic, layout) all significantly outperformed 

scalar features describing its content (NLP metrics, semantic intents). 

• Feature efficiency is more important than feature count: remarkably, a 

simple model using just 4 basic structural features (URL depth, length, link 

count, image count) achieved 76.4% accuracy, easily surpassing the 58.4% 

achieved by 19 more complex Text + NLP features. This demonstrates that 

focusing on the right type of signal is more important the raw number of 

features. 

• The vectorization necessity: The poor performance of the “Text + NLP” 

family (58.4%) confirms that descriptive metadata is insufficient for 

understanding content. This explicitly validates our architectural decision 

to use high-dimensional TF-IDF vectors for the production classifier 

(Track-B), rather than these scalar metrics. 
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5.3 Model performance results 

The evaluation followed our three-stage experimental protocol, moving from 

validating the Auditor to deploying the Classifier. 

5.3.1 Experiment I: Validating the Network Auditor 

Research question: “Does the network structure alone provide a reliable 

“ground-truth”?” 

The answer was a resounding yes. Models trained exclusively on network 

topology features achieved high accuracy, validating our core premise that network 

encodes business logic. 

• A model with 7 basic centrality features achieved a best test accuracy of 

86.0% 

• A model with 29 comprehensive network features achieved an average test 

accuracy of 91% across four different algorithms, with the Random Forest 

model peaking at an impressive 95.3%.  

This proves that the website’s graph structure is not arbitrary but it’s a rich 

source of information that encodes the organizational logic of the enterprise, 

making it a reliable “Auditor” for page placement. 

5.3.2 Experiment II: Uncovering the feature efficiency principle 

Research question: “Can we improve the performance of the Auditor 

by adding metadata features?” 

Here, we discovered a counter-intuitive but critical insight. While 

combining all feature families into a multi-modal achieved a strong 91.9% 

accuracy, this was lower than the 95.3% test accuracy achieved by the network only 

RF model. 

This “paradox” suggest that the network features provide such a dominant and clean 

signal that adding weaker, noisier features from other modalities can slightly dilute 

performance rather than enhance it. This finding justifies the use of a lightweight, 

network-only model for the Audit phase. 
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5.3.3 Benchmarking: Reaching the technical peak with GNNs 

To ensure our Random Forest Auditor model wasn’t missing deep patterns, we 

deployed GraphSAGE. When using only the network features this model achieved 

the highest performance of any GNN on the complete dataset (including the 

“unknown” classes), establishing the technical “gold-standard”.  

However, when trained on the full feature set, the GNN’s accuracy dropped 

90.21% (a 4.68% decrease), further confirming the feature efficiency principle we 

observed on Experiment II.  

 

Model 
Test 

accuracy 

Macro-

F1 
Key contribution 

GraphSAGE 94.89% 93.2% 
Technical gold standard, the best overall 

performance on full data-set 

GCN 91.49% 90.1% 
Highly efficient and effective graph 

convolution. 

GAT 90.21% 88.7% 
Attention-based learning for 

interpretable connections 

 

Table 6: Graph Neural Network performance comparison 

While GraphSAGE (94.8%) slightly underperformed the clean Random Forest 

(95.3%), it demonstrated robustness in handling imperfect, real-world data. 

However, given the computational cost, the Random Forest remains the more 

practical choice for the production Auditor. 
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Figure 7: Training related curves of the three GNN models (GraphSAGE, GCN, GAT) 

5.3.4 Experiment III: Validating the “cold-start” solution 

Research question: “Can we create a fast and scalable model for 

classifying new content that isn’t yet in the network?” 

For a practical, real-word application, we evaluated the Text-First 

Classifier. Unlike the “NLP metrics” model in Experiment II (which scored 56.1%), 

this model utilized high-dimensional TF-IDF vectors. 

This approach achieved a remarkable 92% accuracy, demonstrating its 

viability for production systems. The massive jump in accuracy from Experiment 

II (56%) to Experiment III (92%) proves that while scalar metadata is weak, 

semantic vectors are highly predictive. Crucially this high performance was 

possible because the model was trained on labels validated by the Network Auditor. 

The text model effectively learned to mimic the structural logic encoded in the 

training set. 
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5.3.5 Technical demonstration 

To validate the practical applicability of our Track B (cold-start) model, we 

developed an interactive web application that provides real-time page classification 

and visualizes the integration of a new page into the new network. This tool serves 

as the production interface for content teams, effectively bridging the gap between 

our theoretical findings and daily business operations. 

 

 

Figure 8: The UI of the "cold-start" classifier with predicted labels 

The application workflow demonstrates the solution to the cold-start problem 

in real time: 

1. Input: The user enters the raw text for a proposed webpage (e.g. a 

new products or solution’s description) into the interface. At this 

stage, the page has no links and position in the graph. 

2. Inference: the underlying Track B Classifier processes the text via 

the TF-IDF pipeline and predicts the optimal Business Unit, Product 

Family and Segment. 
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3. Visualization: As shown in Figure 9, the application visualizes the 

existing network (Track A’s domain) and projects the new “gold 

node” into its predicted cluster. 

4. Link recommendation: The system suggests specific existing 

pages the new content should link to (outbound) and which authority 

pages should link back to it (inbound), effectively solving the 

structural integration problem before the page is even published. 

 

 

Figure 9: Part of the UI of the interactive web application where we connect a new page 

to the network 

5.4 Error analysis 

No model is perfect, and analyzing its errors is important for understanding its 

boundaries and uncovering deeper insights into the dataset. To this end, we 

conducted an in-depth analysis of the misclassifications made by our best 

performing GNN model, GraphSAGE. The confusion matrix shows that while the 

model is extremely accurate for well-defined categories like solutions or products, 

its errors are concentrated in two strategically important areas: 

A. The “shared” content: the most significant confusion is by far occurs with 

the “shared” category, which the model correctly identified only 33.33% of 

the time. The errors were distributed across products, solutions and 

corporate. This result fits with the nature of this label, because multiple 
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businesses are sharing on it, which means that its content is mixed and it 

can appear on multiple communities in the network. 

B. “Corporate” versus specific product types: the second area of minor 

confusion is with “Corporate” pages, which were correctly identified 84% 

of the time but were sometimes mistaken for solutions or product pages. 

This is also a logical overlap as corporate communication is often focus on 

specific product lines or solutions, so while the page belongs to corporate, 

it is using content related to other parts of the business. 

 

 

Figure 9: GraphSAGE confusion matrix 

The model’s errors are a useful diagnostic tool. They don’t simply indicate a 

model failure but they pinpoint areas where the company’s own information 

architecture has overlapping or using unclear definitions. The difficulty in 

classifying “shared” content provides a clear, data-driven recommendations for the 

enterprise to consider creating more distinct and structurally integrated landing 

zones for cross-functional content. 

6 Discussion and conclusions 

This chapter synthesizes the results presented in Chapter 5, interpreting their 

significance and discussing their broader implications for enterprise AI governance. 

We summarize the validation of our dual-track framework, explore the theoretical 

underpinnings of the observed “feature efficiency” principle and outline the 

practical applications of this work. 
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6.1 Key findings 

This research was not a single experiment but a systematic engineering 

validation of a proposed “classify – validate – verify” workflow. Our three-stage 

experimental design led to foundational discoveries about the nature of enterprise 

web structure and the optimal architectures for managing it. 

6.1.1 Experiment I: Validating the network-centric premise 

The first critical finding was the validation of the Network Auditor. We 

proved that an enterprise website’s network structure is not merely navigational but 

contains a high-fidelity signal of business logic. Models trained exclusively on 29 

network topology features achieved 95.3% accuracy (Random Forest) in classifying 

business units. This result confirms that the site’s graph structure provides a reliable 

“ground truth” for automated governance, capable of detecting structural anomalies 

without relying on potentially noisy page content. 

6.1.2 Experiment II: Uncovering the limits of multi-modal data 

The second major finding addressed the question of optimal feature 

selection. We observed counter-intuitive “efficiency principle”: adding descriptive 

metadata (readability scores, layout counts) to the strong network signal actually 

reduced performance (from 92.5% to 91.9% in multi-modal tests). We also found 

that scalar metrics derived from text (Track A) were poor predictors (58.4% 

accuracy). This failure of “metadata” justified our architectural decision to use 

high-dimensional TF-IDF vectors for the production classifier, proving that text 

cannot be compressed into simple metrics without losing its semantic signal.  

6.1.3 Experiment III: Solving the “cold-start” problem 

Finally, we demonstrated that the deep structural intelligence validated in 

Experiment I could be transferred to a fast, scalable production tool. By training a 

Text-First Classifier (Track B) on network validated labels, we achieved 92% 

accuracy with lower than 100ms latency. This result proves that while scalar text 

features are weak (Experiment II), vectorized text features are highly predictive 

(Experiment III). This distinction validates our dual-track architecture: using low-
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dimensional network features for auditing and high-dimensional text vectors for 

placement. 

6.2 Practical implications 

The findings of this research have significant practical implications, moving 

beyond academic theory to provide a tangible framework for helping large 

enterprises manage their digital ecosystems and prepare them for an AI-driven 

future. This work establishes the analytical groundwork necessary for what can be 

termed “AI-readiness” by unlocking three core capabilities. 

6.2.1 A data-driven blueprint of the information architecture 

This research proved that an enterprise’s website’s architecture is not an 

abstract concept but a measurable, machine-readable system with learnable rules. 

Our network-centric models achieved up to 95% accuracy is classifying a page’s 

business function based solely on its connections. This provides enterprises with a 

powerful new capability, the ability to generate a quantitative, data-driven 

“blueprint” of their entire information architecture. Instead of relying on outdated 

sitemaps or manual audits, they can use this framework to see how their site is 

actually structured. This allows them to identify structural weaknesses, such as the 

85 content islands we discovered, which sometimes represent valuable content that 

is poorly integrated and hard to discover and sometimes pages published live and 

made public by mistake (test sites, dummy page, etc.). 

6.2.2 An automated system for ensuring structural coherence 

The research demonstrates that the implicit rules governing the website’s 

organizational logic can be learned by an AI with high accuracy. 

Our models achieved 92-95% accuracy across a range of classification tasks, 

from broad business units to more specific page functions. This proves the 

feasibility of creating an automated governance system. Such a system can 

continuously monitor the site for “structural drift”, pages that are miscategorized or 

become disconnected over time. For a business, this means moving from periodic, 
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expensive manual audits to a proactive, automated system that ensures the entire 

digital ecosystem remains coherent and logically structured. 

6.2.3 A practical tool for real-time content governance  

Our production classifier with the text-first model achieved 92% accuracy. This 

is a direct solution to a common business bottleneck. It enables the creation of an 

interactive, AI-assisted tool that can guide content creators to place new pages in 

the most effective location in real-time. Our technical demonstration proves this is 

not just a theoretical but a practical, deployable solution. This ensures that the 

website’s structural integrity is maintained from the moment new content is created, 

significantly reducing the need for future clean-up and reorganization. 

Together these capabilities from a comprehensive framework for transforming 

a large, complex website from a difficult-to-manage liability into a coherent, 

optimized, and AI-ready strategic asset. 

6.3 The feature efficiency principle 

One of the theoretically important results of this research is that we observed 

a machine learning principle called feature efficiency: the counter-intuitive finding 

that for this problem, simpler models with fewer, high-quality features consistently 

outperform more complex models with a larger feature set. This was not an isolated 

incident but a pattern that emerged across both traditional and advanced 

architectures. 

6.3.1 The initial discovery with traditional models 

During our baseline model experiments a Random Forest model trained on 

just 29 network features achieved a test accuracy of 92.5%. However, when we 

trained the same model on a comprehensive set of 135 features, its performance 

slightly decreases to 91.9%. Adding 106 additional features from content, layout, 

and other modalities resulted a net negative impact. While this 0.6 percentage point 

difference may seem marginal, it represents a consistent pattern across all cross-

validation folds and, more importantly, demonstrates that 106 additional features 

requiring significant computational resources provides zero benefit. 
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6.3.2 Confirmation with Graph Neural Networks 

The ultimate test of this principle came from our state-of-the-art GraphSAGE 

model. One might assume that a sophisticated GNN, specifically designed to learn 

complex feature interactions on a graph, would be able to filter noise and benefit 

from the additional features, but the opposite occurred. 

• The GraphSAGE model trained on 29 network features achieved our peak 

accuracy of 94.89%.  

• The exact same GNN architecture trained on 100 numeric features saw its 

accuracy fall by 4.68% to 90.21%.  

 

This is a notable result. It proves that the principle is not an artifact of a specific 

model’s limitations but a fundamental property of the problem itself. It provides the 

strongest possible evidence that for classifying organizations function, network 

topology is the dominant signal, and other features actively hinder performance, 

even for advanced architectures. 

6.3.3 Theoretical explanations of this principle 

Our analysis suggests three complementary theoretical reasons for this 

phenomenon: 

1. Signal to noise theory: the network features provide an exceptionally 

strong and clean signal. Our analysis showed that the network-centric model 

(92.5% CV mean) significantly outperformed the text-only model (58.4% 

CV mean). When the primary signal is this dominant, adding weaker signals 

introduces more statistical noise than valuable information, forcing a model 

to learn to ignore irrelevant data and increasing the risk of overfitting. 

2. Feature redundancy and information overlap: the network structure 

already implicitly captures most of the information present in the other 

feature families. As validated by the 94.2% homogeneity between detected 

communities and business units, a page’s network position is a powerful 

proxy for its function. According to Conway’s Law [20] organizational 

structure dictates technical structure; therefore, a page’s content and layout 
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are often a result of its position in a network, not an independent signal. 

Adding these downstream features creates information redundancy without 

adding new, orthogonal insights. 

3. The “curse of dimensionality”: As shown in the ablation study, 

performance peaks with a curated set of features and then declines as more, 

less-relevant features are added. For both the traditional ML models, and 

the more advanced GNNs the optional set was around 29 features. This 

proving that quality is more important than quantity regardless of 

architecture. Beyond this optimal point, the models suffer from the curse of 

dimensionality, where the feature space becomes too vast and sparse, 

making it harder to learn the true signal. 

6.3.4 Practical implications 

Rather than viewing this as a limitation, the feature efficiency principle 

provides valuable guidance for real-world system design. Our research 

demonstrates that when a single feature family (like network topology) is 

overwhelmingly predictive, the best strategy is often to isolate that signal rather 

than dilute it with weaker indicators. 

 This finding feature challenges the common assumption that “more data is 

always better”. Instead, it validates the focused approach: identifying the dominant 

signal for the specific problem and optimize for it. In our case, network structure 

proved so informative about organizational function that additional features only 

added noise. 

This approach yielded concrete benefits in our production system: faster 

training times, simpler maintenance, lower computational costs, and paradoxically, 

better performance. By embracing the feature efficiency principle, we achieved 

both technical and practical deployability. 

6.4 Study limitations and future work 

Before discussing limitations, it’s important to note the extensive 

methodological safeguards put in place to ensure the validity of our results. We 

proactively addressed several potential threats to internal validity: 
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• Label-feature independence: to prevent circular reasoning, our target 

labels were sourced from Fortune 500 Enterprise’s independent CMS 

taxonomy, while our network features were derived solely from the 

site’s link topology. 

• Leakage prevention: we excluded temporal features, prevented URL 

token leakage in our text-first model, and used a single, fixed test set 

across all four experimental phases to ensure fair and unbiased 

comparisons. 

• Tautology avoidance: community membership, while used to validate 

the quality of our labels (showing 94.2% homogeneity), was not used as 

a predictive feature in our network models to avoid tautological 

conclusions. 

 

These measures provide a strong foundation for the integrity of our findings. 

Nevertheless, the study has several inherent limitations. 

6.4.1 Study limitations 

1.  Single domain focus: The primary limitation of this research is that its 

finding based on the analysis of a single enterprise website. While this site 

is large and diverse, the “network-dominant” signal we observed may be 

characteristic of organizations with a highly structured information 

architecture. The findings may not generalize directly to websites with 

flatter, less hierarchical structures. 

2. Temporal scope: our analysis is cross-sectional, representing a snapshot of 

the website at a single point in time. It does not capture the evolution of the 

site’s structure, the decay of certain content areas, or the impact of major 

redesigns over time. 

3. Feature and model scope: the feature engineering process, while 

comprehensive, relied on a curated set of features rather than a fully 

automated discovery. Furthermore, while our models performed 

exceptionally well, we did not perform an exhaustive casual analysis to 
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prove that network position causes better performance, only that it is 

strongly correlated. 

6.4.2 Future research directions 

The limitations of the current study directly inform a rich agenda for future 

work. The framework developed in this thesis serves as the foundational 

groundwork for several exciting research avenues including: 

• Cross domain validation: the most critical next step is to apply this 

network-centric methodology to other large enterprise websites to test the 

generalizability of the network dominance principle. Our theory is that the 

proved signal dominance is universal and it can be observed on different 

enterprise websites from similar (IT, tech) industry but it would be 

interesting to see how it changes on a website from a way different industry, 

and how the size of the enterprise could impact that signal strength. 

• Temporal network analysis: future work should incorporate a time-series 

dimension, analyzing multiple snapshots of the website to model its 

evolution, detect “structural drift”, and predict which content areas are 

growing or decaying in importance. In our current research even if we 

captured timestamps for the data, we excluded that from the final feature set 

to reduce the complexity and drive the focus to prove the core research 

question, but this data would be essential for a future AI-driven website 

managing agent. 

• Integrating with user behavior: major extension would be to integrate 

user engagement metrics (e.g. click-through rates, time on page, etc.) into 

the network model. This would allow us to move from analyzing intended 

structure to understanding the effective structure as experienced by users. 

With this fundamental improvement we can shift from the classic webpage 

analytics paradigm where we focus on performance of specific page, or 

page groups, with a network-centric view where we treat the website as a 

network where neighbors have influence on each other.   

• Integrating embeddings: experimenting with more advanced embedding 

techniques is also a promising next step. In our current research we used 
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manually defined metrics to describe features (e.g., PageRank, 

Betweenness) but embeddings let the models to learn these latent structural 

relationships directly without that predefined “vocabulary”. We can 

combine LLM and Network embeddings to create a hybrid model that does 

not require our hand-crafted feature engineering which was one of the main 

limitations of the current research. 

• From analysis to generation: this thesis deliberately focused on 

establishing the analytical foundation. The logical next step is to use these 

insights to build generative systems. This includes using the network-

validated patterns to guide AI in generating not just page placements, but 

also optimal page layouts and even the content itself.  

6.5 Conclusion 

This thesis addressed the critical challenge of preparing large, complex 

enterprise websites for an AI-driven future by asking a fundamental question: What 

is the most reliable signal for understanding a site’s business logic? We uncovered 

a definitive answer: the network. 

Our research validated a dual-track system that leverages this insight. We 

proved that network topology provides a 95% accurate “ground truth” for auditing, 

while high-dimensional texts allow for 92% accurate “cold-start” placement. 

Crucially we established the feature efficiency principle, demonstrating that for 

structural analysis, a focused set of 29 topological features outperforms complex 

multi-modal datasets- even when using state-of-the-art GNNs. 

Ultimately, this work provides a blueprint for the “self-organizing enterprise 

website”. By enabling AI to classify new content, place it within the structure and 

verify its integrity, we transform the corporate website from an unmanageable 

liability into a coherent, AI-ready asset. 
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Appendix 

 

A1: The user interface of Argus web scraper – the custom Python web scraper used to 

collect the data for the research 

 

A2: Argus Network Analyzer - This custom visualization tool used in early stage of the 

research in the EDA phase 
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A3: Dashboard for the extracted features to shop correlation heatmaps, box plot with 

outliners, etc. 

 

A5: Prometheus Network Analyzer - this is the visualization engine used and embedded 

in our production system 
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