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Abstract

As Al-driven search and Large Language Models (LLMs) reshape the digital landscape,
structural integrity of enterprise websites has become critical for machine interpretability.
However, large-scale hierarchical websites suffer from “structural drift” where content owners
focus on page creation rather than optimal placement within the network ecosystem. To address
this, we propose a dual-stage Al framework designed to automate the governance of enterprise
web architecture.

Using part of a Fortune 500 Enterprise domain as a representative case study (1,169
webpages, 18,428 links), this research develops a workflow to solve the “cold-start” problem
and ensure long-term structural health. First, we implemented a cold-start classifier using TF-
IDF and Logistic regression, which successfully categorizes new, unconnected text content
with 92% accuracy. Second, we developed a Network Audit mechanism to validate page
placement. Our extensive analysis revealed that network topology is a superior predictor for
business logic, achieving 95.3% accuracy using Random Forest models.

The thesis demonstrates that a practical, two-step workflow using text analysis for
immediate classification and network analysis for continuous validation provides a robust
solution for maintaining complex enterprise web structures without the need for

computationally expensive deep learning techniques.

Keywords: network science, machine learning, webpage classification, cold-start problem,

network topology, enterprise SEO, Al governance
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Introduction and background

1 Introduction and background

1.1 Problem statement

Enterprise websites, often including thousands of pages developed by
decentralized teams, have grown too large and complex for holistic manual
oversight. This scale created a critical risk in the modern digital ecosystem: without
a coherent underlying structure, these sites risk becoming a “black box”, leading to
significant operational inefficiencies. The core challenge is no longer just content
creation but ensuring that this vast digital footprint is structurally sound and
discoverable. When the structure decays, it leads to three specific business

problems:
1.1.1 High maintenance cost

Websites with multiple content-silos, orphaned content could require
constant maintenance. Manual auditing to identify structural issues demands
significant manual effort creating a snowball effect where unaddressed problems
compound over time, gradually degrading overall site performance.

While specific studies on enterprise web maintenance costs are limited, we
can build a conservative estimate based on observable practices:

A. Manual content audit for a 10,000-page site typically requires 2-3

minutes per page just for the initial status checks, plus additional time
for documenting and addressing issues. This easily totaling 800-1,000
hours annually. At a typical analyst rate of $50/hour, audit costs alone
reach $40,000-$50,000.

B. Remediation adds substantially more. Simple fixes like broken links
take 15 minutes, while structural fixes requiring re-categorization or
content integration can take 2-4 hours per page. Assuming just 20% of
pages need some intervention annually, remediation costs approximate
$150,000.

These calculations exclude all hidden costs like any additional fix,
emergency updates which could typically take longer than preventive
maintenance, but we still get a conservative $200,000 annually cost on this
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structure related maintenance. This financial drain is a direct result of reactive,

manual governance rather than proactive, automated structural management.
1.1.2 Diminished content ROI

A “content-first” approach without network-centric governance could lead
to redundant content and the creation of isolated page communities. When teams
cannot visualize the existing content network or predict where new pages will
connect, they inadvertently create duplicate content or publish pages that become
immediately orphaned.

For example, a marketing team might invest significantly in a new
“solutions” page, unaware that similar content already exists in another business
unit. This not only wastes the initial creation budget but creates long-term liabilities.
At an enterprise scale, these redundant pages are often localized into multiple
languages, multiplying the waste. If a company operates in 75 locals, a single
redundant page generates tens of thousands of dollars in unnecessary translation
and deployment costs. This is the price of focusing content creation while ignoring

the page’s place within the network.
1.1.3 Inconsistent user experience

Poor site structure directly impacts user satisfaction and business outcomes.
Research by Nielsen Norman Group found that difficulty finding information is
responsible for significant user frustration and abandonment on enterprise websites
[1]. When users encounter structural dead-ends or content silos that force them into
navigation loops, they quickly abandon their journey.

The Baymard Institute’s comprehensive e-commerce studies consistently show
that navigation issues and inability to find desired product rank among the top
reasons for site abandonment, with their data showing an average 70% cart
abandonment rate across industries [2]. Users have limited patience for navigation
failures, typically abandoning their search after multiple unsuccessful attempts [3].

For enterprise pages processing millions of visits annually, these structural
issues comping: if even 10% of visitors encounter navigation dead-ends, that

represent hundreds of thousands of lost opportunities monthly.
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Google’s research emphasizes that user expectations continue to rise, with 53%
of mobile users abandoning sites that fail to meet their needs quickly [4].

Even marginal improvements in network coherence (ensuring every page has a
clear path forward and connection to related content) can significantly impact user

success rates and conversion metrics.

1.2 The coreresearch question and vision

Before we can automate the management of these complex systems, we must
answer a fundamental question: How can an Al automatically classify new content
and validate the structural integrity of a massive enterprise website?

The process of answering this core question raised several practical sub-
questions across the different phases of the research, including:

e What kind of data need to be collected for a network?

e How this data can be collected effectively with crawlers, and which is the best
way to process and store it?

e How can the network be visualized as an interactive graph that is easy to
interpret and analyze?

e What type of features can be extracted from this data, and how can this be done
effectively?

e Which machine learning algorithms are most suitable for this classification
task?

e How can a simple web application with a user interface be built and connected

to predictive models and network visualization?

In answering these questions, a long-term vision emerged: to empower
enterprises with an automated governance framework. This system moves beyond
simple “content analysis” to create a “classify, place, verify” workflow:

1. Classify (Cold-Start): Instantly identify where a new page belongs based

on its text.

2. Place: Integrate the page into the site structure.

3. Verify (Network audit): Continuously scan the site’s links to detect if

pages are placed incorrectly or if the structure is drifting.
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This shifts the paradigm from reactive maintenance to proactive architectural

optimization.

1.3 Research objectives

The primary objective of this research is to build and validate this dual-stage Al
framework. Instead of focusing strictly on compare different algorithms, this work
focuses on operational/business goals:

A. Solve the “Cold-start” problem: Develop a production-ready text
classifier capable of categorizing new, unconnected content with high
accuracy (>90%) to enable immediate automation.

B. Establish a “ground truth” validator: prove that the website’s network
topology (links) provides more accurate signal of business logic than other
types. This validates the use of network analysis as automated “Auditor” to
check the work of content/deployment teams.

C. Demonstrate feature efficiency: show that complex Deep Learning
models (like Graph Neural Networks) are often “overkill” for this specific
domain, and that simpler, explainable models can achieve state-of-the-art
performance for practical deployment.

Together, these objectives provide the comprehensive validation required to

shift enterprise strategy from a content-first to a network-centric model for website

governance.

1.4 Dataset overview and key findings

To build this system we modeled a 1,169-page, 18,428-link section of the
Fortune 500 Enterprise’s website as a complex network. Our research led to
successful development of the proposed framework, backed by three key findings:

e The solution for cold-start problem: We successfully built a
lightweight text-based classifier that solves the cold-start problem. By
using TF-IDF and Logistic Regression, the system can instantly
categorize new pages with 92% accuracy, proving that immediate

automation is viable.
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e The network validator: We confirmed that for existing pages, the
network structure is the ultimate “source of truth”. Our network-based
models achieved 95.3% accuracy in identifying a page’s business
function solely based on its links. This allows the system to “audit”
itself using the network model to double-check if the text model (or a
human editor) placed a page correctly.

e The efficiency insight: We found that while Graph Neural Networks
(GraphSAGE model) performed exceptionally well (94.9%), they did
not significantly outperform simpler Random Forest models (95.3%).
This critical finding suggests that practical enterprise governance,
robust standard models are more efficient and deployable than
complex deep learning architectures.

2 Literature review

This chapter reviews the foundational academic work that underpins our
network-centric approach. We will first explore the solution of network-based web
analysis, from early graph theory applications to modern community detection
algorithms. We will then examine the literature of cold-start problem and text-based
classification. Finally, we will synthesize these fields to identify the critical

research gap that this thesis addresses.

2.1 Network based web analysis

The concept of analyzing the web as a network of interconnected nodes has been
a cornerstone of web science for decades. This section traces the evolution of this
idea, beginning with the foundational theories that first applied graph science to the
web, moving to the specific algorithms developed to uncover hidden structures
within these networks, and concluding with the current state of analysis for

enterprise-specific websites.
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2.1.1 Graph theory in Web Science

The application of graph theory to understand the web began with the
foundational work of Page and Brin (PageRank) and Kleinberg (HITS) which
demonstrated that importance of a web page is defined recursively by the
importance of the pages linking to it [5,6]. This shifted the focus from analyzing
pages in isolation to understanding them through their connections. Barabéasi and
Newman expanded this view by showing that real-word networks, including the
web, exhibit scale-free properties and preferential attachment [7,8]. This implies
that in an enterprise website (like in our case), “hub” pages (like a product listing)
naturally emerge and attract links, creating a structural fingerprint that identifies

their business function without analyzing their text.
2.1.2 Community detection and structural semantics

A critical component of validating website structure is identifying
“communities”, clusters of pages that link more densely to each other than to the
rest of the network. Girvan and Newman and later the Louvain and Leiden
algorithms established that these communities are often correspond to functional
units in the real world [9,10,11]. In an enterprise context, a “community” in the web
graph typically represents specific business unit. This literature provides the
theoretical basis for our network audit module: if a page belongs to the solutions

text category but it structurally located in the products community it is an anomaly.

2.2 The cold-start problem in content management

While network analysis excels at understanding existing structures, it
suffers from a fundamental limitation known in recommender systems literature as

the “cold-start problem”.
2.2.1 The limitations of collaborative filtering

Traditional recommendation and classification systems often rely on
“collaborative filtering” using past interactions (links/clicks) to classify an item.
However, as noted in recent systematic reviews by Panda et al. (2022) and Zaiwa
et al. (2024), these systems fail when a new item (or webpage) is introduced because
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its lacks the necessary connection history to be analyzed [13,14]. This is the exact
challenge facing the enterprise content management: a new page has no incoming

links and network position yet, therefore, network models can’t classify it.
2.2.2 Text-based classification as the solution

To solve the cold-start problem, literature suggests “content-based filtering” as
the mandatory step. By analyzing the item’s intrinsic features (text content) rather
than its extrinsic features (links), systems can achieve immediate classification.
Standard techniques such as TF-IDF (Term Frequency-Inverse Document
Frequency) coupled with linear classifiers (Logistic Regression, SVM) remain the
industry standard for this task due to their low latency and high interpretability [15].
While recent advancement using BERT and Transformers offer higher semantic
understanding, studies consistently show that for specific domain tasks with limited
data, simpler “bag-of-words” models often provide a competitive and
computationally more efficient baseline [15]. For real-time enterprise governance,
the literature supports the use of these efficient models to bridge gap until the page

acquires enough links to be analyzed by the network model.

2.3 Graph Neural Networks

Once a page is integrated into the network, modern Deep Learning allows for
a more sophisticated analysis of its role. Graph Neural Networks (GNNs) have
emerged as the state-of-the-art method for node classification, capable of learning
from both the links and the features of neighboring nodes.

The Graph Convolutional Network (GCN), introduced by Kipf and
Wellington, revolutionized this field by allowing information to propagate through
the graph structure [16]. However, GCNs require the entire graph to be present
during training, which is impractical for constantly changing websites. GraphSAGE
(Hamilton et al., 2017) addressed this by learning “inductive” embedding functions.
Instead of memorizing the graph, GraphSAGE learns how to aggregate information
from a node’s neighbors [17]. This theoretical advantage makes GraphSAGE the
primary candidate for our experimental “upper bound” analysis, representing the

most complex possible solution to the network classification problem.
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2.4 Gap in current research

Despite the rich literature in both text classification and graph mining, there is a

distinct gap in applied Enterprise Al Governance.

1. Separation of concerns: existing studies typically focus either on text
classification (NLP) or network topology (Graph Mining). Few studies
propose and integrated workflow that uses text as the cold-start phase and
network topology for the validation phase [18].

2. Over-engineering in production: academic literature often prioritizes
maximizing accuracy with complex GNNs without regarding the “feature
efficiency principle” [15]. There is little research quantifying whether the
structural complexity of a GNN is actually necessary for enterprise web data,
or if simpler Random Forest models can capture the same business logic with
lower overhead.

3. Focus on external search vs. internal structure: the vast majority of web
analysis literature focuses on SEO for external discovery. There is a scarcity
of research focused on internal structural health and automated governance

policies, as highlighted in recent reviews on Al in corporate governance [22].
3 System architecture and data collection

This project required the development of a complete, end-to-end pipeline to
transform a live enterprise website into a structured dataset ready for machine
learning analysis. The system consists of two primary concepts: a custom web
scraper for data collection and an Al engine for feature extraction and analysis. This

chapter details the architecture of that system.

3.1 End to end system overview

To validate our dual-stage Al framework, we developed a software architecture
capable of transforming a live enterprise website into a structured, machine-
learnable dataset. The system was designed with two distinct operational goals:

A. The analytical pipeline (track A): to rigorously test feature efficiency

and network supremacy using low-dimensional, interpretable metrics.
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B. The inference engine (track B): to deploy a high-dimensional, low-
latency “cold-start” classifier for production use.

The data follows four main stages:

1. Data collection: A custom web scraper systematically navigates the target
website extracting raw HTML content, metadata, and the hyperlink
structure for each page. During the crawl we only gather public data from
pages where bot traffic enabled through the “index, follow” tag and which
are represented in the page’s public sitemap XML file.

2. Structured storage: The raw scraped data is cleaned and organized into a
relational database, with distinct tables for pages (nodes) and links (edges)
to from a graph structure.

3. Feature engineering: The Al Engine process raw data from the database
into versioned feature sets, separating statistical metrics from production
vectors.

4. Modeling and inference: the final feature set is used to train and evaluate
the machine learning models, leading the productions-ready inference
service. The training separates the “Auditor” (Network) and “Classifier”

(Text) models to support the automated governance workflow.
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Figure 1: System architecture with the separate program layers

3.2 Web Scraper architecture

To collect data at scale, we developed a custom, enterprise-grade web scraper
using Python, BeautifulSoup4 and Requests. The architecture was designed to be

robust and efficient, capable of handling the complexities of modern, modular

websites.
The system extracts three layers of data from the target domain:
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e Topology: All internal hyperlinks were extracted to construct a directed
graph of 1,169 nodes and 18,428 edges, capturing the site’s navigational
skeleton.

e Content: Raw HTML was parsed to extract the body text, excluding the
navigation boilerplate to ensure clean semantic signals.

e Metadata: The scraper captures hierarchical headers (H1-H6) and detects
proprietary CMS layout modules to understand visual structure.

The scraper was engineered to handle common real-world challenges, including
client-side JavaScript rendering, respecting robots.txt and server rate limits with
configurable delays, and parsing the non-standard CMS components. Other key
challenges during this development:

e Implementing robust error handling and retry logic to ensure the
accuracy and completeness of the collected data

e Designing an efficient data processing pipeline to minimize CPU and
memory load during intensive scraping operations.

e Storing the extracted data in a database schema optimized for efficient

access and complex network-based queries.

3.3 Al Engine architecture

The Al Engine is the analytical core of the system, designed to transform the
raw data into machine learning features. To address the research question regarding
“feature efficiency”, we designed the engine to support multiple extraction
strategies, distinguishing between descriptive metrics (used for analysis) and
semantic vectors (used for production). To support the dual-track methodology, the

engine is split into two pipelines:
3.3.1 Track A: The analytical pipeline (network audit)

For the primary experimental analysis (Chapter 4-5), the engine reduces
complex raw data into 144 interpretable features. This pipeline prioritizes
“efficiency” by capturing maximum business signal with minimal dimensions.

e Network features (29 features): Using the NetworkKit backend for

performance, this module computes graph-theoretic metrics including

11
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PageRank, Betweenness Centrality and Louvain Community
membership. This compresses the global site structure into a 29-
dimensional vector for each page.

NLP and semantic metrics (25+ features): Instead of using raw text
vectors, this module distills content into scalar metrics to test if “text
complexity” predicts business function.

o Readability: Extracts Flesch-Kincaid and Gunning Fog scores.

o Intent classification: Utilize a pre-trained MiniLM-L12
transformer (384 dimensions). For the analytical experiments we
used the categorical intents rather than the raw 384-dimensional
embeddings to maintain feature interpretability.

Layout and basic features (56+ features): captures the visual
“fingerprint” of a page by counting specific layout modules, images and

analyzing URL depth.

3.3.2 Track B: the inference pipeline (cold-start)

For the “cold-start” production service where prediction accuracy is paramount

over feature count, the engine switches to a high-dimensional approach.

TF-IDF vectorizer: unlike the analytical pipeline, the production model
transforms raw text into a sparse vector space of 20,000 features (1-2 n-
grams).

Latency optimization: while deep learning transformers (like BERT)
were available, the production system utilizes this TF-IDF architecture
to achieve low inference latency (<100ms) and high throughput (>1000
predictions/second). This decision ensures the system can handle real-
time enterprise loads without computational overhead of GNNs or

Transformers.

3.4 Data flow and integration

The system’s components are tightly integrated to ensure a seamless flow of

data. The scraper populates a database, which serves as the “source of truth”. The

Al Engine then queries this database to build its analytical datasets and network

12
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graphs. Trained models are serialized and versioned, ready to be loaded by the
inference service for live predictions. This modular, database-centric architecture
separates the concerns of data collections and data analysis, making the entire
system robust and scalable.

4 Methodology

The primary challenge in automating enterprise web governance is the dual
nature of the problem: new content requires immediate classification based on
limited features we can extract from the input (cold-start problem), while existing
content requires continuous structural validation (audit problem).

To address this our methodology departs from traditional “monolithic” model
development and instead of training a single model, we engineered two distinct
subsystems with opposing design philosophies:

1. Track A — the network auditor: A low-dimensional, interpretable model
designed to establish “ground truth” by analyzing the site’s topology. The input is
low dimensional network and metadata features. This model validates whether the
site structure actually reflects business logic. In our experiments, this serves as the
benchmark for accuracy.

2. Track B - the cold-start classifier: A high dimensional, high-throughput
model designed to approximate that ground truth using only text. The input is high
dimensional vectors (TF-IDF). This model predicts where a page should go.

This chapter details the mathematical foundations, data processing pipeline, and

experimental design used to validate this framework.

4.1 Analyzing websites as networks

To build the “network auditor”, we first had to transform the static website into
a quantifiable complex network. By modeling the website where pages are nodes
(V) and hyperlinks are directed edges (E), we can employ a suite of powerful
mathematical tools to measure the role, influence, and function of each page within

the broader digital ecosystem.
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Figure 2: The Fortune 500 Enterprise’s domain modelled and visualized as a directed

graph where each color represents a different business unit
4.1.1 Degree centrality

Degree centrality is the most fundamental measure of a node’s connectivity. It
is often split into two distinct types for directed networks like websites:
e In-degree counts the number of incoming links, serving as a measure
of a page’s local popularity or authority.
e Out-degree counts the number of outgoing links, indicating its
function as a navigational hub.
The formulas are given by:
degin(v) =1 {(w,v) € E} |,
degouc(v) =l {(v,u) € E} |
In our research, pages with high in-degree were often important destinations
(e.g., a product family page), while pages with high out-degree were typically

navigational pages (e.g., a product gateway page with multiple product lines).
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4.1.2 PageRank

Developed by Brin and Page (1998), PageRank [5] measures a page’s global
importance based on the principle that links from important pages confer more
authority than links from unimportant ones.

The formula is the following:

1—-d PR(u)
PR(v) =—— +d —
@) | VI degout (U)

UEN; (V)

Here, d is a damping factor, typically set to 0.85, which represents the probability
that a user will continue clicking links. N, (v) is the set of pages that link to page
v. The formula essentially reflects the probabilistic visibility of a page if a user were
not navigating the site by randomly clicking links. In the context of an enterprise
website, PageRank is a key indicator of “authority pages”, such as major business

unit landing pages or top-level product categories.
4.1.3 Betweenness centrality

Betweenness centrality quantifies how often a page acts as a bridge or broker on
the shortest navigational path between other pages.

Its formula is:

Co(v) = Z 05t (V)

o
szt ¢

Where oy, is the total number of shortest paths between page s and page t, and
os:(v) is the number of those paths that pass-through page v. For our enterprise
website, pages with high betweenness centrality often highlighted cross-functional
landing zones or “solution” pages that connect different business areas, making

them critical for information flow across the enterprise.
4.1.4 Closeness centrality

Closeness centrality measures how quickly a page can, on average, reach all
other pages in the network. It is a measure of navigational efficiency.
It is calculated as the inverse of the sum of the shortest path distances from page

v to all other pages u:
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CW) =3 30w

In our analysis, pages with low closeness scores helped identify structurally
isolated content, such as the 85-content island we discovered, which are hard for
users and Al systems to reach.

4.1.5 Eigenvector centrality

Eigenvector is a more nuanced measure of importance. Like PageRank, it holds
that connections to important nodes are more valuable. However, it specifically
identifies pages that are connected to other highly connected pages, making it a
measure of influence within the network.

It’s defined as the principal eigenvector of the graph’s adjacency matrix A,

1 n
Xi = Zzl AU Xj
]:

Where A is the largest eigenvalue of A.This metric was particularly useful for

satisfying the equation:

detecting foundational “anchor pages” within the analyzed ecosystem that serves as

the center of influential neighborhoods.
4.1.6 Community detection and modularity

Community detection algorithms, such as Louvain and Leiden, aim to partition
the network into clusters that have dense internal connections and sparser

connection between clusters. The quality of this partitioning measure by modularity

Q).

The modularity formula is:
1 kik;
Q= Z[Aij — 5180 )
ij

Where m is the number of edges, A4;; is the adjacency matrix, k; is the degree of
node i, and 5 (c;, c;) is 1 if nodes i and j are in the same community, and O otherwise.
A high Q score (our network had Q = 0.847) indicates a well-defined community
structure. Our finding that the resulting communities correlated with business unit
boundaries is a cornerstone of this thesis’s argument.
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4.1.7 Participation coefficient

The participation coefficient measures how a page’s links are distributed among
different communities. It is an excellent proxy for identifying cross-functional
content.

It is calculated as:

kis2
=1- (%)

s=1
Here, Ny, is the number of communities, k; is the total degree of a page i, and
ki is the number of links from page i to pages in community s. A page with a
participation coefficient near 1 is a “connector” with links distributed among many
communities. A score near 0 indicates its links are almost exclusively within its
own community. In our error analysis, we noted that the model struggled with
“shared” content. These pages often exhibited a high participation coefficient,

confirming their structurally ambiguous role.

4.2 Data collection and preprocessing

The foundation of this research is the dataset of 1,169 pages and 18,428
internal links collected from Fortune 500 Enterprise’s website. An initial data
quality assessment revealed the dataset to be high quality, with a low missing value
rate of just 1.8% (589 out of 33,443 values), for which no systematic patterns were
detected.

To prepare the data for our dual-track modeling, a standardized preprocessing

pipeline was applied.
4.2.1 Missing value treatment

We treated predictors and target labels differently to ensure data integrity:

e For predictor features (x variables): missing numeric features were
filled using median imputation, while categorical features used mode
imputation.

e For target labels (y variable): pages with missing labels were removed

from the traditional ML models to create a clean classification task, but
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assigned a distinct “unknown” class for the GraphSAGE model to learn

from the entire graph structure, including its ambiguous nodes.
4.2.2 Outlier handling

Statistical outliers were identified using the Interquartile Range (IQR) method.
Values were capped at 1.5X IQR beyond the first and third quartiles to prevent
extreme values (for example a sitemap page with extreme number of links) from

skewing the models.
4.2.3 Feature scaling and encoding:

e Analytical models: All numeric features were scaled using a StandardScaler to
ensure compatibility with SVM and Logistic Regression. Tree-based models
(Random Forest, XGBoost) used the raw values as they are scale-invariant.

e Production model: The data was normalized via TF-IDF, which inherently

handles scaling through L2 normalization.

4.3 Feature engineering

Our analysis framework is built on a modular system of seven specialized
feature extractors that generate a rich dataset of 144 features per page. This multi-
faceted approach ensures we capture signals for every dimension of a webpage.

For Track A, we purposefully used only the 11 high-level “intent” categories
rather than the full embedding vectors to test if low-dimensional metadata was

sufficient for classification. Track B utilizes the high-dimensional feature space.
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Feature Feature
Track ) Purpose and key features
family count
Basi Captures fundamental characteristics of the page. Includes
asic
A - Audit feat 29 URL depth, content metrics (word/link counts) and
eatures
business taxonomy (e.g. Business unit).
Measures a page’s role and influence within the site’s
) Network )
A - Audit 29 network. Includes centrality scores (PageRank,
features ] ) )
Betweenness), and community detection metrics.
NLP Analyzes the complexity and readability of the text.
A - Audit 14 Includes Flesch Reading Ease, SMOG Index, and other
features )
metrics
) Semantic High level categorization (intent 1D) derived from
A - Audit 11 o ]
features MiniLM embeddings.
] Other ] Includes-specific layout and module detection, SEO
A - Audit Varies . o
features metrics (keywords, descriptions) .
] Text High-dimensional TF-IDF vectors (1-2 n-grams) for raw
B - Production 20,000 o
Vectors content classification.

Table 1: Feature types, counts and their short descriptions

4.4 Experimental design

To ensure our results are scientifically valid and free from bias, we designed

an experimental protocol centered around data integrity and fair comparison.
4.4.1 Data splitting and leakage prevention

A strict, stratified 80/20 holdout split was used, creating a training set of 935
pages and a final, untouched test set of 234 pages. A fixed random seed
(random_state = 42) was used throughout all experiments to ensure perfect
reproducibility.

To prevent data leakage, we implemented several safeguards:

e Temporal features (creation date, visit) were excluded.

e URL tokens containing the target label (like “/products/””) were stripped

from the text features
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e All model running and cross-validation were performed exclusively on the
training data. The tests set was only used once for the final evaluation of
each model.

e The identical 234-page test set was used across all four research phases,
ensuring that any performance differences are due to changes in our models,

not variations in data.
4.4.2 Managing the labels

A core strength of our methodology is the validation of our ground truth labels.

e Primary labels: the target labels for classification (Business Unit, Product
family, etc.) were sourced directly from the Enterpise’s own internal Content
Management System (CMS) taxonomy.

e Independent validation: to ensure these labels were meaningful we validated
them against our network analysis. The fact that the algorithmically detected
communities showed 94.2% homogeneity with the CMS business unit labels
confirms the labels reflect the true underlying structure of the sties. This
prevents any risk of circular reasoning, as the labels (from the CMS) and

network features (from link structure) are from independent sources.
4.4.3 Experimental progression

Our research progressed through three distinct experiments:

1. Experiment I (the validation of auditor): testing if network topology alone can
predict business function.

2. Experiment 11 (feature efficiency): testing if adding NLP and Layout metadata
improved the auditor.

3. Experiment 111 (cold-start solution): testing if the Text-first model can match

the auditor’s performance for new pages.

45 Evaluation metrics

To provide a comprehensive assessment of model performance, we used a

combination of primary, statistical and explainability metrics.
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e Primary metrics: the main performance indicators were the 5-fold cross-
validation mean accuracy on the training set and the final text accuracy on
the holdout set.

e Statistical validation: to ensure our conclusions were robust, we calculated
95% Bootstrap Confidence Intervals (using 10,000 samples) for key
comparisons and reported Cliff’s Delta to measure effect size.

e Explainability metrics: to understand why the models made their
decisions, we used Permutation Important and Feature Ablation studies to
identify the most influential features.

4.6 Model Architectures and training parameters

During our experiments we deployed diverse model families to establish
performance baselines and theoretical limits. All models trained and evaluated with
a fixed random seed (random_state = 42) to ensure full reproducibility of our

findings.
4.6.1 Traditional ML models (Track A - network audit)

We employed four classic supervised learning models to establish a strong
performance baseline on the engineered feature set. The selection was guided by
the need to test diverse model families, from easy to interpretable to powerful, non-
linear ensembles. All models used with standardized hyperparameters to ensure
consistency and properly address natural class imbalances in the dataset. All
features set for these models were preprocessed using StandardScaler, except the

tree-based Random Forest and XGBoost models, which are scale-invariant.

Model Key parameters Value or configuration
Logistic Regression Max _iter 2000
Class_weight balanced
Random_state 42
Support Vector Machine | kernel rbf
Class_weight balanced
Random_state 42
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Random Forest N_estimators 100
Class_weight balanced
Random_state 42

XGBoost Eval_metric mlogloss
Random_state 42

Cross-Validation Accuracy
° o o o o
= o = [EE
i b= 2 5 R

1

o
o
3

Table 2: Hyperparameters of our Phase 1-2 models

Logistic Regression (LR): This linear model serves as an interpretable
baseline. It was configured with max_iter = 2000 to ensure
convergence and class_weight =’balanced’ to manage class
imbalance.

Support Vector Machine (SVM): Implemented with a radial basis
function (rbf) kernel and class_weight = 'balanced’, this model was
chosen for its effectiveness in capturing complex, non-linear
relationships.

Random Forest (RF): As a robust tree-based ensemble with 100
estimators and balanced class weights, this model was critical for its
strong performance and feature importance rankings.

XGBoost: This gradient-boosted trees model represented out high-
performance benchmark, with fully documented parameters and

mlogloss as the evaluation metric appropriate for our multi-class tasks.

0,90

Figure 3: Hyperparameter tuning for RF, XGboost and LR models
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4.6.2 Graph Neural Networks (Track A — network audit)

During our Track A (network audit) experiments, we explored the performance
ceiling using GraphSAGE, our top-performing GNN architecture. The model was

trained for a maximum of 100 epoch with an early stopping patience of 15 to
prevent overfitting. A critical finding was that the GNN achieved peak performance

on 94.89% using only the 29 network topology features.

GraphSAGE Training
(Test Acc: 94.9%, Best Epoch: 27)

o Training | nss

Iraining Loss

GCN Training
(Test Acc: 91.5%, Best Epoch:

GAT Training
(Test Acc: 90.2%, Best Epoch: 56)

Iraining |.oss

20 25 30 33
Epoch

0 5 w13

o 10 20 30 40 50 G0 kil 80

Epoch

Figure 4: The training curves of our GNN models

The GraphSAGE model was implemented with two hidden layers to aggregate

information from a two-hop neighborhood around each node. A dropout rate of 0.3

was used for regularization.

GNN Model name

Key Parameters

Value or configuration

GraphSAGE

Hidden_dim 128
Num_layers 2
dropout 0.3
Learning_rate 0.01
Weight_decay 5e-4

Table 3: Hyperparameters for our GraphSAGE model

4.6.3 Text-first model for production system (Track B - classifier)

For the final phase, our goal was to build a model that was not only accurate but

also highly scalable and ready for a real-world production environment. This model
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needed to classify new content based on its text alone, without relying on pre-
existing network information.
We engineered a two-stage pipeline optimized for low-latency inference:

1. TF-IDF Vectorizer: This component transforms raw text into a numerical
feature vector. It was configured to limit vocabulary to 20,000 features and
capture both single words and two-word phrases (ngram_range = (1,2)).

2. Logistic Regression classifier: This classifier was specifically configured
for this task with max_iter = 2000 and class_weight = 'balanced’ to

better handle the imbalanced classes present in the text data.

Class 10 Class 2.0 Class 3.0

|
1'
|
|

% as is i3 1 o ® = w5 &1 ws o
TEIDE Coeticians TEANF Costhoent LT L —
Class 1.0 Class 5.0 Class 6.0

|
|
I
]
g o—— TEADE Conticien: TEADF Conticn

Figure 5: Top terms per business class in the cold-start classification

This lightweight architecture successfully achieved high accuracy while
maintaining an inference latency of under 100ms, making it perfectly suited for

real-time applications.
5 Results

This chapter presents the empirical results of our analysis, beginning with a
descriptive overview of the dataset to characterize the complexity of the enterprise
ecosystem. We then detail the results of our three main experiments and conclude

with an analysis of classification errors.
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5.1 Descriptive analysis

The subject of our analysis is a significant portion of a Fortune 500
Enterprise’s website, comprising 1,169 unique pages (nodes) and 18,428 internal
hyperlinks (edges). This dataset was split into a 935-page training set and a 234-
page test set to ensure rigorous evaluation. A descriptive analysis reveals a complex
and varied digital ecosystem, characteristic of a large enterprise.

5.1.1 The content landscape

Characteristic Mean Std Dev Min Max Description

Content metrics

Main body text character

Text Length (chars) 1,935 3,343 0 78,096

count
Word Count 387 669 0 15,619 | Total words per page
Avg Word Length 4,94 0.56 0 55 Average characters per

word
Sentence Count 19 33 0 780 Total sentences
Paragraph Count 6 11 0 260 | Text paragraphs

Link and structure

Link Count 43 35 0 550 Total hyperlinks per page
Image Count 10 15 0 199 Total images
URL Depth 4.1 0.88 2 7 Depth in site hierarchy
URL Length 83 24 33 169 URL character count

Network metrics

Inbound links (highly

Degree (In) 16 34 0 237
skewed)

Degree (Out) 16 12 0 80 Outbound links
PageRank 0.00086 | 0.0014 | 0.00015 0.011 | Authority score
Community Size 126 83 1 262 Detected community size

Layout metrics
Module Count 11 8 0 99 modular components
Module Diversity 0.61 0.23 0 1.0 Shannon diversity index

Table 4: Content statistics of the webpages
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The content on the site is highly diverse, reflecting a wide range of business
functions. The average page contains 387 words, but the distribution is heavily
skewed, with content ranging from simple landing pages with zero body text
(usually video module pages) to comprehensive technical case studies with over
15,000 words. Similarly, the number of hyperlinks on a page averages 43 but can
be as high as 550 on major navigational hubs. This diversity underscores the

challenge of using content features alone for classification, as there is no “typical”

page.
5.1.2 The network architecture

Analysis of the site’s link structure reveals a classic scale-free network, with
a small number of highly connected “hub” pages and a long tail of more specialized
pages. The network is dominated by a single giant component containing 1,064
pages (91% of the dataset), ensuring information can flow across the site.

However, the analysis also uncovered significant structural weaknesses. We
identified 85 “content islands”, pages or small clusters of pages that are poorly
integrated into the main network. These structural anomalies often represent
content that is difficult for both users and Al systems to discover, highlighting a
clear, actionable area of improvement for the enterprise.

This complex and varied landscape provides a rich environment for testing
our core hypothesis: determining which signals (the diverse page content or the

underlying network structure) are most predictive of a page’s business function.

5.2 Feature efficiency results

To determine the optimal inputs for a network auditor, we conducted a
comprehensive feature family supremacy analysis from Track A. Each of the seven
feature families was used to train a model independently, using identical algorithms

and the same cross-validation protocol.
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5.2.1 Network supremacy

Our analysis revealed a clear and decisive winner: the network feature
family. As summarized in table below, features derived from the website’s topology

outperformed all other signal types.

Feature CV Mean Best Gap vs
Rank ) Features
Family (95% CI) Accuracy | Network
Network 92.5% (90.9- i
1st ) 29 92.5% Baseline
(comprehensive) 94.4%)
Network 83.4% (80.3-
2nd ] 7 86.0% -9.2 pp
(basic) 86.2%)
_ 76.4% (74.2-
3rd Page Basic 4 77.6% -16.3 pp
78.5%)
72.7% (71.1-
4th Layout 27 73.7% -19.9 pp
74.1%)
58.6% (56.0-
5th SEO 5 58.3% -34.1 pp
61.9%)
58.4% (56.6-
6th Text + NLP 19 56.1% -34.3 pp
60.2%)
) 49.7% (48.8-
7th Semantic 11 51.3% -43.0 pp
50.5%)

Table 5: Individual feature family performance for business unit classification

The most striking result in the +34.3-percentage point gap in cross-
validation accuracy between the comprehensive network model (92.5%) and the
Text + NLP model (58.4%). This massive difference was validated across multiple
classification tasks, including segment (+40.3pp) and page-level (+27.4pp)
predictions.

The statistical evidence confirms this is not a random fluctuation. The 95%
bootstrap confidence interval for the performance difference between network and
text features was +31.6pp to +36.7pp, and the effect size analysis yielded a Cliff’s
Delta of 1.00, a perfect effect size indicating that the network model outperformed

the text model in every single cross-validation fold.
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Business Unit

77.6% 73.7%

r70

Segment - 79.4% 72.4% 64.0% 61.0%
Page Level q 79.3% 73.6% 73.1% 67.4%
Network Network Page Layout Text+NLP Semantic
{comp) (basic) Basic

Figure 6: Feature family performance across all classification tasks

5.2.2 Key insights from feature analysis

The experiment yielded several notable insights that from the foundation of our

Auditor design:

Structure is more predictive than metadata: features describing the
page’s structure (network, page basic, layout) all significantly outperformed
scalar features describing its content (NLP metrics, semantic intents).
Feature efficiency is more important than feature count: remarkably, a
simple model using just 4 basic structural features (URL depth, length, link
count, image count) achieved 76.4% accuracy, easily surpassing the 58.4%
achieved by 19 more complex Text + NLP features. This demonstrates that
focusing on the right type of signal is more important the raw number of
features.

The vectorization necessity: The poor performance of the “Text + NLP”
family (58.4%) confirms that descriptive metadata is insufficient for
understanding content. This explicitly validates our architectural decision
to use high-dimensional TF-IDF vectors for the production classifier

(Track-B), rather than these scalar metrics.
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5.3 Model performance results

The evaluation followed our three-stage experimental protocol, moving from
validating the Auditor to deploying the Classifier.

5.3.1 Experiment I: Validating the Network Auditor

Research question: “Does the network structure alone provide a reliable
“ground-truth”?”
The answer was a resounding yes. Models trained exclusively on network
topology features achieved high accuracy, validating our core premise that network
encodes business logic.
e A model with 7 basic centrality features achieved a best test accuracy of
86.0%

e A model with 29 comprehensive network features achieved an average test
accuracy of 91% across four different algorithms, with the Random Forest
model peaking at an impressive 95.3%.

This proves that the website’s graph structure is not arbitrary but it’s a rich
source of information that encodes the organizational logic of the enterprise,

making it a reliable “Auditor” for page placement.
5.3.2 Experiment Il: Uncovering the feature efficiency principle

Research question: “Can we improve the performance of the Auditor
by adding metadata features?”

Here, we discovered a counter-intuitive but critical insight. While
combining all feature families into a multi-modal achieved a strong 91.9%
accuracy, this was lower than the 95.3% test accuracy achieved by the network only
RF model.

This “paradox” suggest that the network features provide such a dominant and clean
signal that adding weaker, noisier features from other modalities can slightly dilute
performance rather than enhance it. This finding justifies the use of a lightweight,

network-only model for the Audit phase.

29



Results

5.3.3 Benchmarking: Reaching the technical peak with GNNs

To ensure our Random Forest Auditor model wasn’t missing deep patterns, we
deployed GraphSAGE. When using only the network features this model achieved
the highest performance of any GNN on the complete dataset (including the
“unknown” classes), establishing the technical “gold-standard”.

However, when trained on the full feature set, the GNN’s accuracy dropped
90.21% (a 4.68% decrease), further confirming the feature efficiency principle we

observed on Experiment II.

Test Macro- L
Model Key contribution
accuracy F1

Technical gold standard, the best overall
GraphSAGE | 94.89% 93.2%
performance on full data-set

Highly efficient and effective graph
GCN 91.49% 90.1% _
convolution.

Attention-based learning for
GAT 90.21% 88.7%

interpretable connections

Table 6: Graph Neural Network performance comparison

While GraphSAGE (94.8%) slightly underperformed the clean Random Forest
(95.3%), it demonstrated robustness in handling imperfect, real-world data.
However, given the computational cost, the Random Forest remains the more

practical choice for the production Auditor.
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Figure 7: Training related curves of the three GNN models (GraphSAGE, GCN, GAT)

5.3.4 Experiment lll: Validating the “cold-start” solution

Research question: “Can we create a fast and scalable model for
classifying new content that isn’t yet in the network?”

For a practical, real-word application, we evaluated the Text-First
Classifier. Unlike the “NLP metrics” model in Experiment II (which scored 56.1%),
this model utilized high-dimensional TF-IDF vectors.

This approach achieved a remarkable 92% accuracy, demonstrating its
viability for production systems. The massive jump in accuracy from Experiment
Il (56%) to Experiment Il (92%) proves that while scalar metadata is weak,
semantic vectors are highly predictive. Crucially this high performance was
possible because the model was trained on labels validated by the Network Auditor.
The text model effectively learned to mimic the structural logic encoded in the
training set.
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5.3.5 Technical demonstration

To validate the practical applicability of our Track B (cold-start) model, we
developed an interactive web application that provides real-time page classification
and visualizes the integration of a new page into the new network. This tool serves
as the production interface for content teams, effectively bridging the gap between

our theoretical findings and daily business operations.

Add New Page to Network Simulator

un smaton

Placement Confidence

Suggested Connections

Pages the new page should ek to:

Figure 8: The Ul of the "'cold-start" classifier with predicted labels

The application workflow demonstrates the solution to the cold-start problem
in real time:

1. Input: The user enters the raw text for a proposed webpage (e.g. a
new products or solution’s description) into the interface. At this
stage, the page has no links and position in the graph.

2. Inference: the underlying Track B Classifier processes the text via
the TF-IDF pipeline and predicts the optimal Business Unit, Product

Family and Segment.
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3. Visualization: As shown in Figure 9, the application visualizes the
existing network (Track A’s domain) and projects the new “gold
node” into its predicted cluster.

4. Link recommendation: The system suggests specific existing
pages the new content should link to (outbound) and which authority
pages should link back to it (inbound), effectively solving the
structural integration problem before the page is even published.

Network Impact Metrics

11

Interactive Network View

Figure 9: Part of the Ul of the interactive web application where we connect a new page

to the network

5.4 Error analysis

No model is perfect, and analyzing its errors is important for understanding its
boundaries and uncovering deeper insights into the dataset. To this end, we
conducted an in-depth analysis of the misclassifications made by our best
performing GNN model, GraphSAGE. The confusion matrix shows that while the
model is extremely accurate for well-defined categories like solutions or products,
its errors are concentrated in two strategically important areas:

A. The “shared” content: the most significant confusion is by far occurs with

the “shared” category, which the model correctly identified only 33.33% of
the time. The errors were distributed across products, solutions and

corporate. This result fits with the nature of this label, because multiple
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businesses are sharing on it, which means that its content is mixed and it
can appear on multiple communities in the network.

B. “Corporate” versus specific product types: the second area of minor
confusion is with “Corporate” pages, which were correctly identified 84%
of the time but were sometimes mistaken for solutions or product pages.
This is also a logical overlap as corporate communication is often focus on
specific product lines or solutions, so while the page belongs to corporate,

it is using content related to other parts of the business.

GraphSAGE Confusion Matrix (Counts) GraphSAGE Confusion Matrix (Normalized)

&}
2
l

Predicted Class Predicted Class

Figure 9: GraphSAGE confusion matrix

The model’s errors are a useful diagnostic tool. They don’t simply indicate a
model failure but they pinpoint areas where the company’s own information
architecture has overlapping or using unclear definitions. The difficulty in
classifying “shared” content provides a clear, data-driven recommendations for the
enterprise to consider creating more distinct and structurally integrated landing

zones for cross-functional content.
6 Discussion and conclusions

This chapter synthesizes the results presented in Chapter 5, interpreting their
significance and discussing their broader implications for enterprise Al governance.
We summarize the validation of our dual-track framework, explore the theoretical
underpinnings of the observed “feature efficiency” principle and outline the

practical applications of this work.
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6.1 Key findings

This research was not a single experiment but a systematic engineering
validation of a proposed “classify — validate — verify” workflow. Our three-stage
experimental design led to foundational discoveries about the nature of enterprise
web structure and the optimal architectures for managing it.

6.1.1 Experiment I: Validating the network-centric premise

The first critical finding was the validation of the Network Auditor. We
proved that an enterprise website’s network structure is not merely navigational but
contains a high-fidelity signal of business logic. Models trained exclusively on 29
network topology features achieved 95.3% accuracy (Random Forest) in classifying
business units. This result confirms that the site’s graph structure provides a reliable
“ground truth” for automated governance, capable of detecting structural anomalies

without relying on potentially noisy page content.
6.1.2 Experiment Il: Uncovering the limits of multi-modal data

The second major finding addressed the question of optimal feature
selection. We observed counter-intuitive “efficiency principle”: adding descriptive
metadata (readability scores, layout counts) to the strong network signal actually
reduced performance (from 92.5% to 91.9% in multi-modal tests). We also found
that scalar metrics derived from text (Track A) were poor predictors (58.4%
accuracy). This failure of “metadata” justified our architectural decision to use
high-dimensional TF-IDF vectors for the production classifier, proving that text

cannot be compressed into simple metrics without losing its semantic signal.
6.1.3 Experiment lll: Solving the “cold-start” problem

Finally, we demonstrated that the deep structural intelligence validated in
Experiment | could be transferred to a fast, scalable production tool. By training a
Text-First Classifier (Track B) on network validated labels, we achieved 92%
accuracy with lower than 100ms latency. This result proves that while scalar text
features are weak (Experiment Il), vectorized text features are highly predictive
(Experiment I11). This distinction validates our dual-track architecture: using low-
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dimensional network features for auditing and high-dimensional text vectors for

placement.

6.2 Practical implications

The findings of this research have significant practical implications, moving
beyond academic theory to provide a tangible framework for helping large
enterprises manage their digital ecosystems and prepare them for an Al-driven
future. This work establishes the analytical groundwork necessary for what can be

termed “Al-readiness” by unlocking three core capabilities.
6.2.1 A data-driven blueprint of the information architecture

This research proved that an enterprise’s website’s architecture is not an
abstract concept but a measurable, machine-readable system with learnable rules.
Our network-centric models achieved up to 95% accuracy is classifying a page’s
business function based solely on its connections. This provides enterprises with a
powerful new capability, the ability to generate a quantitative, data-driven
“blueprint” of their entire information architecture. Instead of relying on outdated
sitemaps or manual audits, they can use this framework to see how their site is
actually structured. This allows them to identify structural weaknesses, such as the
85 content islands we discovered, which sometimes represent valuable content that
is poorly integrated and hard to discover and sometimes pages published live and

made public by mistake (test sites, dummy page, etc.).
6.2.2 An automated system for ensuring structural coherence

The research demonstrates that the implicit rules governing the website’s
organizational logic can be learned by an Al with high accuracy.

Our models achieved 92-95% accuracy across a range of classification tasks,
from broad business units to more specific page functions. This proves the
feasibility of creating an automated governance system. Such a system can
continuously monitor the site for “structural drift”, pages that are miscategorized or

become disconnected over time. For a business, this means moving from periodic,
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expensive manual audits to a proactive, automated system that ensures the entire

digital ecosystem remains coherent and logically structured.
6.2.3 A practical tool for real-time content governance

Our production classifier with the text-first model achieved 92% accuracy. This
is a direct solution to a common business bottleneck. It enables the creation of an
interactive, Al-assisted tool that can guide content creators to place new pages in
the most effective location in real-time. Our technical demonstration proves this is
not just a theoretical but a practical, deployable solution. This ensures that the
website’s structural integrity is maintained from the moment new content is created,
significantly reducing the need for future clean-up and reorganization.

Together these capabilities from a comprehensive framework for transforming
a large, complex website from a difficult-to-manage liability into a coherent,

optimized, and Al-ready strategic asset.

6.3 The feature efficiency principle

One of the theoretically important results of this research is that we observed
a machine learning principle called feature efficiency: the counter-intuitive finding
that for this problem, simpler models with fewer, high-quality features consistently
outperform more complex models with a larger feature set. This was not an isolated
incident but a pattern that emerged across both traditional and advanced

architectures.
6.3.1 The initial discovery with traditional models

During our baseline model experiments a Random Forest model trained on
just 29 network features achieved a test accuracy of 92.5%. However, when we
trained the same model on a comprehensive set of 135 features, its performance
slightly decreases to 91.9%. Adding 106 additional features from content, layout,
and other modalities resulted a net negative impact. While this 0.6 percentage point
difference may seem marginal, it represents a consistent pattern across all cross-
validation folds and, more importantly, demonstrates that 106 additional features

requiring significant computational resources provides zero benefit.
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6.3.2 Confirmation with Graph Neural Networks

The ultimate test of this principle came from our state-of-the-art GraphSAGE
model. One might assume that a sophisticated GNN, specifically designed to learn
complex feature interactions on a graph, would be able to filter noise and benefit
from the additional features, but the opposite occurred.

e The GraphSAGE model trained on 29 network features achieved our peak

accuracy of 94.89%.
e The exact same GNN architecture trained on 100 numeric features saw its
accuracy fall by 4.68% to 90.21%.

This is a notable result. It proves that the principle is not an artifact of a specific
model’s limitations but a fundamental property of the problem itself. It provides the
strongest possible evidence that for classifying organizations function, network
topology is the dominant signal, and other features actively hinder performance,

even for advanced architectures.
6.3.3 Theoretical explanations of this principle

Our analysis suggests three complementary theoretical reasons for this
phenomenon:

1. Signal to noise theory: the network features provide an exceptionally
strong and clean signal. Our analysis showed that the network-centric model
(92.5% CV mean) significantly outperformed the text-only model (58.4%
CV mean). When the primary signal is this dominant, adding weaker signals
introduces more statistical noise than valuable information, forcing a model
to learn to ignore irrelevant data and increasing the risk of overfitting.

2. Feature redundancy and information overlap: the network structure
already implicitly captures most of the information present in the other
feature families. As validated by the 94.2% homogeneity between detected
communities and business units, a page’s network position is a powerful
proxy for its function. According to Conway’s Law [20] organizational

structure dictates technical structure; therefore, a page’s content and layout
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are often a result of its position in a network, not an independent signal.
Adding these downstream features creates information redundancy without
adding new, orthogonal insights.

3. The “curse of dimensionality”: As shown in the ablation study,
performance peaks with a curated set of features and then declines as more,
less-relevant features are added. For both the traditional ML models, and
the more advanced GNNs the optional set was around 29 features. This
proving that quality is more important than quantity regardless of
architecture. Beyond this optimal point, the models suffer from the curse of
dimensionality, where the feature space becomes too vast and sparse,
making it harder to learn the true signal.

6.3.4 Practical implications

Rather than viewing this as a limitation, the feature efficiency principle
provides valuable guidance for real-world system design. Our research
demonstrates that when a single feature family (like network topology) is
overwhelmingly predictive, the best strategy is often to isolate that signal rather
than dilute it with weaker indicators.

This finding feature challenges the common assumption that “more data is
always better”. Instead, it validates the focused approach: identifying the dominant
signal for the specific problem and optimize for it. In our case, network structure
proved so informative about organizational function that additional features only
added noise.

This approach yielded concrete benefits in our production system: faster
training times, simpler maintenance, lower computational costs, and paradoxically,
better performance. By embracing the feature efficiency principle, we achieved

both technical and practical deployability.

6.4 Study limitations and future work

Before discussing limitations, it’s important to note the extensive
methodological safeguards put in place to ensure the validity of our results. We

proactively addressed several potential threats to internal validity:
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e Label-feature independence: to prevent circular reasoning, our target
labels were sourced from Fortune 500 Enterprise’s independent CMS
taxonomy, while our network features were derived solely from the
site’s link topology.

e Leakage prevention: we excluded temporal features, prevented URL
token leakage in our text-first model, and used a single, fixed test set
across all four experimental phases to ensure fair and unbiased
comparisons.

e Tautology avoidance: community membership, while used to validate
the quality of our labels (showing 94.2% homogeneity), was not used as
a predictive feature in our network models to avoid tautological

conclusions.

These measures provide a strong foundation for the integrity of our findings.

Nevertheless, the study has several inherent limitations.

6.4.1 Study limitations

1.

Single domain focus: The primary limitation of this research is that its
finding based on the analysis of a single enterprise website. While this site
is large and diverse, the “network-dominant” signal we observed may be
characteristic of organizations with a highly structured information
architecture. The findings may not generalize directly to websites with
flatter, less hierarchical structures.

Temporal scope: our analysis is cross-sectional, representing a snapshot of
the website at a single point in time. It does not capture the evolution of the
site’s structure, the decay of certain content areas, or the impact of major
redesigns over time.

Feature and model scope: the feature engineering process, while
comprehensive, relied on a curated set of features rather than a fully
automated discovery. Furthermore, while our models performed

exceptionally well, we did not perform an exhaustive casual analysis to
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prove that network position causes better performance, only that it is

strongly correlated.

6.4.2 Future research directions

The limitations of the current study directly inform a rich agenda for future

work. The framework developed in this thesis serves as the foundational

groundwork for several exciting research avenues including:

Cross domain validation: the most critical next step is to apply this
network-centric methodology to other large enterprise websites to test the
generalizability of the network dominance principle. Our theory is that the
proved signal dominance is universal and it can be observed on different
enterprise websites from similar (IT, tech) industry but it would be
interesting to see how it changes on a website from a way different industry,
and how the size of the enterprise could impact that signal strength.
Temporal network analysis: future work should incorporate a time-series
dimension, analyzing multiple snapshots of the website to model its
evolution, detect “structural drift”, and predict which content areas are
growing or decaying in importance. In our current research even if we
captured timestamps for the data, we excluded that from the final feature set
to reduce the complexity and drive the focus to prove the core research
question, but this data would be essential for a future Al-driven website
managing agent.

Integrating with user behavior: major extension would be to integrate
user engagement metrics (e.g. click-through rates, time on page, etc.) into
the network model. This would allow us to move from analyzing intended
structure to understanding the effective structure as experienced by users.
With this fundamental improvement we can shift from the classic webpage
analytics paradigm where we focus on performance of specific page, or
page groups, with a network-centric view where we treat the website as a
network where neighbors have influence on each other.

Integrating embeddings: experimenting with more advanced embedding

techniques is also a promising next step. In our current research we used
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manually defined metrics to describe features (e.g., PageRank,
Betweenness) but embeddings let the models to learn these latent structural
relationships directly without that predefined ‘“vocabulary”. We can
combine LLM and Network embeddings to create a hybrid model that does
not require our hand-crafted feature engineering which was one of the main
limitations of the current research.

e From analysis to generation: this thesis deliberately focused on
establishing the analytical foundation. The logical next step is to use these
insights to build generative systems. This includes using the network-
validated patterns to guide Al in generating not just page placements, but

also optimal page layouts and even the content itself.

6.5 Conclusion

This thesis addressed the critical challenge of preparing large, complex
enterprise websites for an Al-driven future by asking a fundamental question: What
is the most reliable signal for understanding a site’s business logic? We uncovered
a definitive answer: the network.

Our research validated a dual-track system that leverages this insight. We
proved that network topology provides a 95% accurate “ground truth” for auditing,
while high-dimensional texts allow for 92% accurate “cold-start” placement.
Crucially we established the feature efficiency principle, demonstrating that for
structural analysis, a focused set of 29 topological features outperforms complex
multi-modal datasets- even when using state-of-the-art GNNs.

Ultimately, this work provides a blueprint for the “self-organizing enterprise
website”. By enabling Al to classify new content, place it within the structure and
verify its integrity, we transform the corporate website from an unmanageable

liability into a coherent, Al-ready asset.
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Appendix

Appendix

Argus - Web Scraping & Analysis Engine

# Actions

F

1,169 1,169 87.8% 100.0%

429 11,187 9.6 12,321 10.5

Al: The user interface of Argus web scraper — the custom Python web scraper used to

collect the data for the research

A Argus - Network Analyzer

x
Network Settings

oy

A2: Argus Network Analyzer - This custom visualization tool used in early stage of the

research in the EDA phase
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Feature Correlations

Feature Selection

Feature Correlation Heatmap

Strongest Negative Correlations:

A3: Dashboard for the extracted features to shop correlation heatmaps, box plot with

outliners, etc.

o Prometheus Natwork Analyzor

Network Controls

Color nedes by.

D Business units rrarian - - » »

A5: Prometheus Network Analyzer - this is the visualization engine used and embedded

in our production system
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